BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 9 Issue 3(2017), Pages 42-51.

PICARD OPERATORS IN b-METRIC SPACES VIA DIGRAPHS

SUSHANTA KUMAR MOHANTA AND SHILPA PATRA

ABSTRACT. In this paper we prove some fixed point theorems in b-metric spaces endowed with a graph which are generalizations of the Banach Contraction Principle. We also prove Edelstein theorem in the setting of b-metric spaces.

1. INTRODUCTION

The notion of a *b*-metric space was introduced by Bakhtin[1] and Czerwik[4]. This is a generalization of the usual notion of a metric space. Several authors reformulated many problems of fixed point theory in *b*-metric spaces. In 2005, Echenique[6] studied fixed point theory by using graphs. Afterwards, Espinola and Kirk[7] applied fixed point results in graph theory. Recently, Jachymski[9] proved a sufficient condition for a selfmap f of a metric space (X, d) to be a Picard operator and applied it to the Kelisky-Rivlin theorem on iterates of the Bernstein operators on the space C[0, 1]. Motivated by the idea given in[9], we reformulated some important fixed point results in metric spaces to *b*-metric spaces endowed with a graph. We also prove *b*-metric version of Edelstein theorem. Finally, an example is provided to support our main result.

2. Some basic concepts

We begin with some basic notations and definitions in *b*-metric spaces.

Definition 2.1. [4] Let X be a nonempty set and $s \ge 1$ be a given real number. A function $d: X \times X \to \mathbb{R}^+$ is said to be a b-metric on X if the following conditions hold:

(i) d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x) for all $x, y \in X$;

(iii)
$$d(x,y) \le s (d(x,z) + d(z,y))$$
 for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space.

If s = 1, then the triangle inequality in a metric space is satisfied, however it does not hold true when s > 1.

²⁰¹⁰ Mathematics Subject Classification. 54H25, 47H10.

Key words and phrases. b-metric; directed graph; G-contraction; fixed point.

^{©2017} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted August 12, 2017. Published September 9, 2017.

The second author is thankful to UGC, India.

Communicated by Denny H. Leung.

Definition 2.2. [2] Let (X, d) be a b-metric space, $x \in X$ and (x_n) be a sequence in X. Then

- (i) (x_n) converges to x if and only if lim_{n→∞} d(x_n, x) = 0. We denote this by lim_{n→∞} x_n = x or x_n → x(n → ∞).
 (ii) (x_n) is Cauchy if and only if lim_{n,m→∞} d(x_n, x_m) = 0.
- (iii) (X,d) is complete if and only if every Cauchy sequence in X is convergent.

Definition 2.3. The sequences (x_n) and (y_n) in a b-metric space (X,d) are called Cauchy equivalent if each of them is a Cauchy sequence and $d(x_n, y_n) \to 0$ as $n \to \infty$.

Definition 2.4. Let (X, d) be a b-metric space. A mapping $f: X \to X$ is called a Picard operator (abbr., PO) if f has a unique fixed point $u \in X$ and $\lim_{n \to \infty} f^n x = u$ for all $x \in X$.

We next review some basic notions in graph theory.

Let (X, d) be a metric space. We assume that G is a directed graph (digraph) with the set V(G) of its vertices coincides with X and a set of edges E(G) contains all the loops, i.e., $E(G) \supseteq \Delta$, where $\Delta = \{(x, x) : x \in X\}$. We also assume that G has no parallel edges and so we can identify G with the pair (V(G), E(G)). G may be considered as a weighted graph by assigning to each edge the distance between its vertices. By G^{-1} we denote the graph obtained from G by reversing the direction of edges i.e., $E(G^{-1}) = \{(x,y) \in X \times X : (y,x) \in E(G)\}$. We treat \tilde{G} as a directed graph for which the set of its edges is symmetric. Under this convention, $E(\tilde{G}) = E(G) \cup E(G^{-1})$. Our graph theory notations and terminology are standard and can be found in all graph theory books, like [3, 5, 8]. If x, y are vertices of the digraph G, then a path in G from x to y of length n $(n \in \mathbb{N})$ is a sequence $(x_i)_{i=0}^n$ of n+1 vertices such that $x_0 = x$, $x_n = y$ and $(x_{i-1}, x_i) \in E(G)$ for $i = 1, 2, \dots, n$. A graph G is connected if there is a path between any two vertices of G. G is weakly connected if G is connected. If G is such that E(G) is symmetric and x is a vertex in G, then the subgraph G_x consisting of all edges and vertices which are contained in some path beginning at x is called the component of G containing x. We note that $V(G_x) = [x]_G$, where $[x]_G$ is the equivalence class of the following relation R defined on V(G) by the rule:

yRz if there is a path in G from y to z.

Clearly, G_x is connected.

Definition 2.5. Let (X, d) be a b-metric space with the coefficient $s \ge 1$ and let G = (V(G), E(G)) be a graph. A mapping $f : X \to X$ is called a Banach G-contraction or simply G-contraction if f preserves edges of G, i.e.,

$$\forall x, y \in X, ((x, y) \in E(G) \Rightarrow (fx, fy) \in E(G)),$$

and f decreases weights of edges of G in the following way: there exists $\alpha \in (0, \frac{1}{s})$ such that

$$d(fx, fy) \le \alpha \, d(x, y)$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

Any Banach contraction is a G_0 -contraction, where the graph G_0 is defined by $E(G_0) = X \times X$. But it is worth mentioning that a Banach G-contraction need not be a Banach contraction (see Remark 3.9).

Remark 2.6. If f is a G-contraction, then f is both a G^{-1} -contraction and a \tilde{G} -contraction.

Definition 2.7. Let (X, d) be a b-metric space with the coefficient $s \ge 1$ and let $f: X \to X$ be a given mapping. We say that f is continuous at $x_0 \in X$ if for every sequence (x_n) in X, we have $x_n \to x_0$ as $n \to \infty \Longrightarrow fx_n \to fx_0$ as $n \to \infty$. If f is continuous at each point $x_0 \in X$, then we say that f is continuous on X.

Definition 2.8. Let (X,d) be a b-metric space with the coefficient $s \ge 1$. A mapping $f : X \to X$ is called orbitally continuous if for all $x, y \in X$ and any sequence $(k_n)_{n \in \mathbb{N}}$ of positive integers,

$$f^{k_n}x \to y \text{ implies } f(f^{k_n}x) \to fy \text{ as } n \to \infty.$$

Definition 2.9. Let (X, d) be a b-metric space with the coefficient $s \ge 1$. A mapping $f: X \to X$ is called G-continuous if given $x \in X$ and a sequence $(x_n)_{n \in \mathbb{N}}$,

 $x_n \to x \text{ and } (x_n, x_{n+1}) \in E(G) \text{ for } n \in \mathbb{N} \text{ imply } fx_n \to fx.$

Definition 2.10. Let (X, d) be a b-metric space with the coefficient $s \ge 1$. A mapping $f : X \to X$ is called orbitally G-continuous if for all $x, y \in X$ and any sequence $(k_n)_{n \in \mathbb{N}}$ of positive integers,

$$f^{k_n}x \to y \text{ and } (f^{k_n}x, f^{k_{n+1}}x) \in E(G) \text{ for } n \in \mathbb{N} \text{ imply } f(f^{k_n}x) \to fy.$$

It is easy to observe the following relations: continuity \Rightarrow orbital continuity \Rightarrow orbital *G*-continuity; continuity \Rightarrow *G*-continuity \Rightarrow orbital *G*-continuity.

3. Main Results

In this section we always assume that (X, d) is a *b*-metric space, and *G* is a directed graph such that V(G) = X and $E(G) \supseteq \Delta$. We begin with the following lemma.

Lemma 3.1. Let (X,d) be a b-metric space with the coefficient $s \ge 1$ and $f : X \to X$ be a G-contraction with a constant $\alpha \in (0, \frac{1}{s})$. Then, given $x \in X$ and $y \in [x]_{\tilde{G}}$, there is $r(x, y) \ge 0$ such that

$$l(f^n x, f^n y) \le \alpha^n r(x, y), \, \forall n \in \mathbb{N}.$$

Proof. Let $x \in X$ and $y \in [x]_{\tilde{G}}$. Then there is a path $(x_i)_{i=0}^N$ in \tilde{G} from x to y, i.e., $x_0 = x, x_N = y$ and $(x_{i-1}, x_i) \in E(\tilde{G})$ for $i = 1, 2, \dots, N$. Since f is a G-contraction, it is also a \tilde{G} -contraction. By mathematical induction, we have

$$(f^n x_{i-1}, f^n x_i) \in E(G) \text{ and } d(f^n x_{i-1}, f^n x_i) \le \alpha^n d(x_{i-1}, x_i)$$

for all $n \in \mathbb{N}$ and $i = 1, 2, \cdots, N$. Now,

$$\begin{aligned} d(f^{n}x, f^{n}y) &\leq s \, d(f^{n}x_{0}, f^{n}x_{1}) + s^{2} \, d(f^{n}x_{1}, f^{n}x_{2}) + \cdots \\ &+ s^{N-1} \, d(f^{n}x_{N-2}, f^{n}x_{N-1}) + s^{N-1} \, d(f^{n}x_{N-1}, f^{n}x_{N}) \\ &\leq \alpha^{n} \sum_{i=1}^{N} s^{i} d(x_{i-1}, x_{i}), \text{ since } s \geq 1. \end{aligned}$$

If we set
$$r(x,y) = \sum_{i=1}^{N} s^{i} d(x_{i-1}, x_{i})$$
, then
$$d(f^{n}x, f^{n}y) \leq \alpha^{n} r(x, y), \forall n \in \mathbb{N}.$$

Theorem 3.2. Let (X, d) be a complete b-metric space with the coefficient $s \ge 1$, and let the triple (X, d, G) has the following property:

(*) For any sequence (x_n) in X, if $x_n \to x$ and $(x_n, x_{n+1}) \in E(G)$ for all $n \ge 1$, then there exists a subsequence (x_{k_n}) of (x_n) such that $(x_{k_n}, x) \in E(G)$ for all $n \ge 1$.

Let
$$f: X \to X$$
 be a G-contraction, and $X_f = \{x \in X : (x, fx) \in E(G)\}$. Then,

- (i) for any x ∈ X_f, f |_{[x]_G} is a G̃_x-contraction and f |_{[x]_G} is a PO.
 (ii) if X_f ≠ Ø and G is weakly connected, then f is a PO.

Proof. (i) Let $x \in X_f$. Then $(x, fx) \in E(G)$ and so $fx \in [x]_{\tilde{G}}$. Consequently, it follows that $[x]_{\tilde{G}} = [fx]_{\tilde{G}}$.

We first show that $f|_{[x]_{\tilde{G}}}$ is a \tilde{G}_x -contraction.

Let $y \in [x]_{\tilde{G}}$. Then there exists a path $(x_i)_{i=0}^p$ from x to y where $x_0 = x, x_p = y$ and $(x_{i-1}, x_i) \in E(\tilde{G})$ for $i = 1, 2, \dots, p$. Since f is a G-contraction, it is also a \tilde{G} -contraction. Then, $(x_{i-1}, x_i) \in E(\tilde{G})$ implies $(fx_{i-1}, fx_i) \in E(\tilde{G})$ for i = $1, 2, \cdots, p$. This proves that $(fx_i)_{i=0}^p$ is a path in \tilde{G} from fx to fy and hence $fy \in [fx]_{\tilde{G}} = [x]_{\tilde{G}}$. Thus, $y \in [x]_{\tilde{G}} \Rightarrow fy \in [x]_{\tilde{G}}$.

Let $(y,z) \in E(\tilde{G}_x)$. By our preceding discussion, we have $fy, fz \in [x]_{\tilde{G}}$. Since $y \in [x]_{\tilde{G}}$, there exists a path $(y_i)_{i=0}^{q-1}$ in \tilde{G} from x to y where $y_0 = x, y_{q-1} = y$. This combining with $(y, z) \in E(\tilde{G}_x)$, there is a path $(y_i)_{i=0}^q$ in \tilde{G} from x to z where $y_q = z$. Let $(z_i)_{i=0}^r$ be a path in G from x to fx where $z_0 = x = y_0$, $z_r = fx = fy_0$. As f preserves edges of G, $(x, z_1, z_2, \cdots, fx, fy_1, \cdots, fy_{q-1}, fy_q)$ is a path in G from x to fz. In particular, $(fy_{q-1}, fy_q) \in E(\tilde{G}_x)$ i.e., $(fy, fz) \in E(\tilde{G}_x)$. Therefore, $f|_{[x]_{\tilde{G}}}$ is a G_x -contraction. Since $fx \in [x]_{\tilde{G}}$, by applying Lemma 3.1, we get

$$d(f^n x, f^{n+1} x) \le \alpha^n r(x, f x), \ \forall n \in \mathbb{N}.$$
(3.1)

For $m, n \in \mathbb{N}$ with m > n, using condition (3.1), we have

$$\begin{aligned} d(f^{n}x, f^{m}x) &\leq & s \, d(f^{n}x, f^{n+1}x) + s^{2} \, d(f^{n+1}x, f^{n+2}x) + \cdots \\ & + s^{m-n-1} \, d(f^{m-2}x, f^{m-1}x) + s^{m-n-1} \, d(f^{m-1}x, f^{m}x) \\ &\leq & \left[s\alpha^{n} + s^{2}\alpha^{n+1} + \cdots + s^{m-n-1}\alpha^{m-2} + s^{m-n-1}\alpha^{m-1} \right] \, r(x, fx) \\ &\leq & s\alpha^{n} \left[1 + s\alpha + \cdots + (s\alpha)^{m-n-2} + (s\alpha)^{m-n-1} \right] \, r(x, fx) \\ &\leq & \frac{s\alpha^{n}}{1 - s\alpha} \, r(x, fx) \\ &\to 0 \quad as \, m, n \to \infty. \end{aligned}$$

Therefore, $(f^n x)$ is a Cauchy sequence in $[x]_{\tilde{G}}$.

If $y \in [x]_{\tilde{G}}$, then $fy \in [x]_{\tilde{G}} = [y]_{\tilde{G}}$. By an argument similar to that used above, $(f^n y)$ is a Cauchy sequence in $[x]_{\tilde{G}}$.

Again, by using Lemma 3.1,

$$d(f^n x, f^n y) \le \alpha^n r(x, y) \to 0 \text{ as } n \to \infty.$$

Hence, $(f^n x)$ and $(f^n y)$ are Cauchy equivalent. By completeness of X, $(f^n x)$ converges to some $u \in X$.

Now,

$$d(f^n y, u) \le sd(f^n y, f^n x) + sd(f^n x, u)$$

gives that, $\lim_{n \to \infty} f^n y = u$. Thus, $\lim_{n \to \infty} f^n y = u$, for all $y \in [x]_{\tilde{G}}$.

As f is a G-contraction and $(x, fx) \in E(G)$, it follows that $(f^n x, f^{n+1}x) \in E(G)$ for all $n \in \mathbb{N}$. By property (*), there exists a subsequence $(f^{k_n}x)$ of $(f^n x)$ such that $(f^{k_n}x, u) \in E(G)$. We note that $(x, fx, f^2x, \dots, f^{k_1}x, u)$ is a path in G and hence it is also a path in \tilde{G} from x to u. This proves that $u \in [x]_{\tilde{G}}$.

Furthermore,

$$d(u, fu) \leq sd(u, f^{k_n+1}x) + sd(f^{k_n+1}x, fu)$$

$$\leq sd(u, f^{k_n+1}x) + \alpha sd(f^{k_n}x, u)$$

$$\rightarrow 0 \quad as \ n \rightarrow \infty.$$

This implies that, d(u, fu) = 0 i.e., fu = u. Thus, $f|_{[x]_{\tilde{G}}}$ has a fixed point $u \in [x]_{\tilde{G}}$.

The next is to show that the fixed point is unique. Assume that there is another point $v \in [x]_{\tilde{G}}$ such that fv = v. Since $\lim_{n \to \infty} f^n y = u$, for all $y \in [x]_{\tilde{G}}$, we have $\lim_{n \to \infty} f^n v = u$ and so, v = u. Thus, $f \mid_{[x]_{\tilde{G}}}$ is a PO.

(*ii*) If G is weakly connected, then $[x]_{\tilde{G}} = X$. Therefore, it follows from (*i*) that f has a unique fixed point u in X and $\lim_{n \to \infty} f^n x = u$, for all $x \in X$. Thus, f is a PO.

The following corollary is the *b*-metric version of Banach Contraction Principle.

Corollary 3.3. Let (X, d) be a complete b-metric space with the coefficient $s \ge 1$ and the mapping $f : X \to X$ be such that

$$d(fx, fy) \le \alpha \, d(x, y)$$

for all $x, y \in X$, where $\alpha \in (0, \frac{1}{s})$ is a constant. Then f has a unique fixed point u in X and $f^n x \to u$ for all $x \in X$.

Proof. The proof can be obtained from Theorem 3.2 by taking $G = G_0$, where G_0 is the complete graph $(X, X \times X)$.

Corollary 3.4. Let (X, d) be a complete b-metric space with the coefficient $s \ge 1$ and let \preceq be a partial ordering on X such that given $x, y \in X$, there is a sequence $(x_i)_{i=0}^N$ such that $x_0 = x, x_N = y$ and for all $i = 1, 2, \dots, N$, x_{i-1} and x_i are comparable. Let $f: X \to X$ be such that f preserves comparable elements and

$$d(fx, fy) \le \alpha d(x, y)$$

46

for all $x, y \in X$ with $x \leq y$ or $y \leq x$ and $\alpha \in (o, \frac{1}{s})$ is a constant. Assume that the triple (X, d, \leq) has the following property:

For any sequence (x_n) in X, if $x_n \to x$ and x_n, x_{n+1} are comparable for all $n \ge 1$, then there exists a subsequence (x_{k_n}) of (x_n) such that x_{k_n}, x are comparable for all $n \ge 1$.

If there exists $x_0 \in X$ with $x_0 \preceq f x_0$ or $f x_0 \preceq x_0$, then f is a PO.

Proof. The proof can be obtained from Theorem 3.2 by taking $G = G_2 = \{(x, y) \in X \times X : x \leq y \text{ or } y \leq x\}$.

Theorem 3.5. Let (X, d) be a complete b-metric space with the coefficient $s \ge 1$, and let $f : X \to X$ be a G-contraction such that f is orbitally G-continuous. Let $X_f = \{x \in X : (x, fx) \in E(G)\}$. Then,

- (i) for any $x \in X_f$ and $y \in [x]_{\tilde{G}}$, $(f^n y)$ converges to a fixed point of f and $\lim_{n \to \infty} f^n y$ does not depend on y.
- (ii) if $X_f \neq \emptyset$ and G is weakly connected, then f is a PO.

Proof. (i) Let $x \in X_f$ i.e., $(x, fx) \in E(G)$. Let $y \in [x]_{\tilde{G}}$. Then proceeding as in Theorem 3.2, we can show that the sequences $(f^n x)$ and $(f^n y)$ are Cauchy equivalent. By completeness of X, $(f^n x)$ converges to some $u \in X$.

Now,

$$\begin{aligned} d(f^n y, u) &\leq s d(f^n y, f^n x) + s d(f^n x, u) \\ &\to 0 \quad as \ n \to \infty, \end{aligned}$$

which gives that, $\lim_{n \to \infty} f^n y = u$ for all $y \in [x]_{\tilde{G}}$.

We now show that u is a fixed point of f.

Since f preserves edges of G and $(x, fx) \in E(G)$, it follows that $(f^n x, f^{n+1}x) \in E(G)$ for all $n \in \mathbb{N}$. Again, f being orbitally G-continuous, we have $f(f^n x) \to fu$ which implies that fu = u since, simultaneously, $f(f^n x) = f^{n+1}x \to u$. Thus, $(f^n y)$ converges to a fixed point u of f.

(*ii*) If $x \in X_f$ and G is weakly connected, then $[x]_{\tilde{G}} = X$ and so by (*i*), f is a PO.

Corollary 3.6. Let (X, d) be a complete b-metric space with the coefficient $s \ge 1$ and let \preceq be a partial ordering on X such that given $x, y \in X$, there is a sequence $(x_i)_{i=0}^N$ such that $x_0 = x, x_N = y$ and for all $i = 1, 2, \dots, N$, x_{i-1} and x_i are comparable. Let $f : X \to X$ be an orbitally continuous function such that f preserves comparable elements and

 $d(fx, fy) \le \alpha d(x, y)$

for all $x, y \in X$ with $x \leq y$ or $y \leq x$ and $\alpha \in (o, \frac{1}{s})$ is a constant. If there exists $x_0 \in X$ with $x_0 \leq fx_0$ or $fx_0 \leq x_0$, then f is a PO.

Proof. The proof can be obtained from Theorem 3.5 by taking $G = G_2 = \{(x, y) \in X \times X : x \leq y \text{ or } y \leq x\}$.

The following theorem is the *b*-metric version of Edelstein theorem.

Theorem 3.7. Let (X, d) be a complete b-metric space with the coefficient $s \ge 1$ and ϵ -chainable for some $\epsilon > 0$, i.e., given $x, y \in X$, there is $N \in \mathbb{N}$ and a sequence $(x_i)_{i=0}^N$ such that $x_0 = x, x_N = y$ and $d(x_{i-1}, x_i) < \epsilon$ for $i = 1, 2, \dots, N$. Let $f: X \to X$ be such that for all $x, y \in X$,

$$d(x,y) < \epsilon \Rightarrow d(fx, fy)) < \alpha \, d(x,y) \tag{3.2}$$

where $\alpha \in (0, \frac{1}{s})$ is a constant. Then f is a PO.

Proof. It follows from condition (3.2) that f is continuous on X.

Let $x \in X$ be arbitrary. If fx = x, then a fixed point of f is assured. Therefore, we assume that $fx \neq x$. Since X is ϵ -chainable, there exists a sequence $(x_i)_{i=0}^N$ such that $x_0 = x$, $x_N = fx$ and $d(x_{i-1}, x_i) < \epsilon$ for $i = 1, 2, \dots, N$. By using condition (3.2), we have

$$d(fx_{i-1}, fx_i) < \alpha \, d(x_{i-1}, x_i) < \alpha \epsilon < \epsilon.$$

and therefore

$$d(f^{2}x_{i-1}, f^{2}x_{i}) = d(f(fx_{i-1}), f(fx_{i})) < \alpha d(fx_{i-1}, fx_{i}) < \alpha^{2}\epsilon.$$

In general, for any positive integer p, we get

$$d(f^{p}x_{i-1}, f^{p}x_{i}) < \alpha^{p}\epsilon, \text{ for } i = 1, 2, \cdots, N.$$

Now,

$$d(f^{p}x, f^{p+1}x) = d(f^{p}x, f^{p}(fx))$$

$$= d(f^{p}x_{0}, f^{p}x_{N})$$

$$\leq sd(f^{p}x_{0}, f^{p}x_{1}) + s^{2}d(f^{p}x_{1}, f^{p}x_{2}) + \cdots$$

$$+ s^{N-1}d(f^{p}x_{N-2}, f^{p}x_{N-1}) + s^{N-1}d(f^{p}x_{N-1}, f^{p}x_{N})$$

$$< (s + s^{2} + \cdots + s^{N-1} + s^{N})\alpha^{p}\epsilon$$

$$= k\alpha^{p}\epsilon, \qquad (3.3)$$

where $k = (s + s^2 + \dots + s^{N-1} + s^N)$.

For $m, n \in \mathbb{N}$ with m > n and using condition (3.3), we obtain

$$\begin{array}{lll} d(f^{n}x, f^{m}x) & \leq & sd(f^{n}x, f^{n+1}x) + s^{2}d(f^{n+1}x, f^{n+2}x) + \cdots \\ & & + s^{m-n-1}d(f^{m-2}x, f^{m-1}x) + s^{m-n-1}d(f^{m-1}x, f^{m}x) \\ & < & k \, \epsilon \, \left(s\alpha^{n} + s^{2}\alpha^{n+1} + \cdots + s^{m-n-1}\alpha^{m-2} + s^{m-n}\alpha^{m-1}\right) \\ & = & k \, \epsilon s \, \alpha^{n} \left(1 + (s\alpha) + (s\alpha)^{2} + \cdots + (s\alpha)^{m-n-1}\right) \\ & < & k \, \epsilon s \, \alpha^{n} \, \frac{1}{1 - s\alpha}, \ since \ s\alpha < 1 \\ & \rightarrow & 0 \ as \ n \to \infty. \end{array}$$

This shows that $(f^n x)$ is a Cauchy sequence in (X, d). Since (X, d) is complete, $(f^n x)$ converges to some point $u \in X$. Continuity of f implies that $f(f^n x) \to fu$. This gives that, fu = u since, simultaneously, $f(f^n x) = f^{n+1}x \to u$. Thus, u is a fixed point of f.

We now show that u is the unique fixed point of f. If possible, suppose that there is another point $v \neq u$ in X such that fv = v. Then, by ϵ -chainability, there exists a sequence $(y_i)_{i=0}^r$ such that $y_0 = u, y_r = v$ and $d(y_{i-1}, y_i) < \epsilon$ for $i = 1, 2, \cdots, r.$

Then,

$$\begin{array}{lll} d(u,v) &=& d(f^{n}u,f^{n}v) \\ &=& d(f^{n}y_{0},f^{n}y_{r}) \\ &\leq& sd(f^{n}y_{0},f^{n}y_{1}) + s^{2}d(f^{n}y_{1},f^{n}y_{2}) + \cdots \\ &+ s^{r-1}d(f^{n}y_{r-2},f^{n}y_{r-1}) + s^{r-1}d(f^{n}y_{r-1},f^{n}y_{r}) \\ &<& (s+s^{2}+\cdots+s^{r-1}+s^{r})\alpha^{n}\epsilon \\ &=& k_{1}\alpha^{n}\epsilon, \ where \ k_{1} = (s+s^{2}+\cdots+s^{r-1}+s^{r}) \\ &\rightarrow& 0 \ as \ n \to \infty, \end{array}$$

which is a contradiction. Therefore, u = v.

We now show that $\lim_{x \to a} f^n x = u$ for all $x \in X$.

If possible, suppose that $\lim_{n\to\infty} f^n y = w$ for some $y \in X$. Then, by our preceding discussion, it follows that w is a fixed point of f. Since u is the unique fixed point of f, we must have u = w and hence $\lim_{n \to \infty} f^n x = u$ for all $x \in X$. Thus, f is a PO.

We conclude with some examples in favour of our main result.

Example 3.8. Let $X = \mathbb{R}$ and define $d: X \times X \to \mathbb{R}^+$ by $d(x, y) = |x-y|^2$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient s = 2. Let G be a directed graph such that V(G) = X and $E(G) = \Delta \cup \{(0, \frac{1}{8^n}) : n = 0, 1, 2, \dots\}.$ Any sequence (x_n) in X with the property $(x_n, x_{n+1}) \in E(G)$ must be a constant sequence. Consequently it follows that the triple (X, d, G) has the property (*). Let $f: X \to X$ be defined by

$$fx = \frac{x}{8}, if x \neq \frac{7}{8} \\ = 1, if x = \frac{7}{8}.$$

For $(0, \frac{1}{8^n}) \in E(G)$, we have

$$d\left(f(0), f(\frac{1}{8^n})\right) = d\left(0, \frac{1}{8^{n+1}}\right) = \frac{1}{8^{2n+2}} = \frac{1}{64} \cdot \frac{1}{8^{2n}} = \alpha d\left(0, \frac{1}{8^n}\right)$$

where $\alpha = \frac{1}{64} \in (0, \frac{1}{s})$ is a constant. Also, f preserves edges of G. Therefore, f is a Banach G-contraction. Clearly, $0 \in X_f$. Thus, we have all the conditions of Theorem 3.2 and $f|_{[0]_{\tilde{G}}}$ is a PO.

Remark 3.9. In Example 3.8, f is a Banach G-contraction with constant $\alpha = \frac{1}{64}$ but it is not a Banach contraction. In fact, if $x = \frac{7}{8}$, y = 1, then

$$d(fx, fy) = d(1, \frac{1}{8}) = \frac{49}{64} > \alpha \cdot \frac{1}{64} = \alpha d(\frac{7}{8}, 1)$$

for any $\alpha \in (0, \frac{1}{\epsilon})$. So, f is not a Banach contraction.

The next example shows that the property (*) in Theorem 3.2 is necessary.

Example 3.10. Let X = [0,1] and define $d: X \times X \to \mathbb{R}^+$ by $d(x,y) = |x-y|^2$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient s = 2. Let G be a directed graph such that V(G) = X and $E(G) = \{(0,0)\} \cup \{(x,y) : (x,y) \in (0,1] \times (0,1], x \ge y\}$. Let $f: X \to X$ be defined by

$$fx = \frac{x}{5}, if x \in (0,1] \\ = 1, if x = 0.$$

Clearly, f preserves edges of G. Moreover, for $(x, y) \in E(G)$, we have

$$d(fx, fy) = \frac{1}{25}d(x, y)$$

where $\alpha = \frac{1}{25} \in (0, \frac{1}{s})$ is a constant. Therefore, f is a Banach G-contraction. It is easy to verify that $X_f = (0, 1]$ and $f^n x \to 0$ for all $x \in X$ but f has no fixed point. Consequently it follows that for any $x \in X_f$, $f \mid_{[x]_{\tilde{G}}}$ is not a PO. We observe that the property (*) does not hold. In fact, (x_n) is a sequence in X with $x_n \to 0$ and $(x_n, x_{n+1}) \in E(G)$ for all $n \in \mathbb{N}$ where $x_n = \frac{1}{n}$. But there exists no subsequence (x_{k_n}) of (x_n) such that $(x_{k_n}, 0) \in E(G)$.

Remark 3.11. In Example 3.10, the graph G is not weakly connected because there is no path in \tilde{G} from 0 to 1. Moreover, f is a Banach G-contraction with constant $\alpha = \frac{1}{25}$ but it is not a Banach contraction. In fact, if x = 0, y = 1, then

$$d(fx, fy) = d(1, \frac{1}{5}) = \frac{16}{25} > \alpha d(0, 1)$$

for any $\alpha \in (0, \frac{1}{s})$. So, f is not a Banach contraction.

Acknowledgments. The authors are grateful to the referees for their valuable comments.

References

- I.A.Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30, 1989, 26-37.
- M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4, 2009, 285-301.
- [3] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
- [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1, 1993, 5-11.
- [5] G. Chartrand, L. Lesniak, and P. Zhang, Graph and digraph, CRC Press, New York, NY, USA, 2011.
- [6] F. Echenique, A short and constructive proof of Tarski's fixed point theorem, Internat. J. Game Theory, 33, 2005, 215-218.
- [7] R. Espinola and W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153, 2006, 1046-1055.
- [8] J. I. Gross and J. Yellen, Graph theory and its applications, CRC Press, New York, NY, USA, 1999.
- [9] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136, 2008, 1359-1373.

Sushanta Kumar Mohanta

DEPARTMENT OF MATHEMATICS, WEST BENGAL STATE UNIVERSITY, BARASAT, 24 PARGANAS (NORTH), KOLKATA 700126, WEST BENGAL, INDIA

E-mail address: smwbes@yahoo.in

Shilpa Patra

DEPARTMENT OF MATHEMATICS, WEST BENGAL STATE UNIVERSITY, BARASAT, 24 PARGANAS (NORTH), KOLKATA 700126, WEST BENGAL, INDIA

 $E\text{-}mail\ address:\ \texttt{shilpapatrabarasat} \texttt{@gmail.com}$