PICARD OPERATORS IN b-METRIC SPACES VIA DIGRAPHS

SUSHANTA KUMAR MOHANTA AND SHILPA PATRA

Abstract

In this paper we prove some fixed point theorems in b-metric spaces endowed with a graph which are generalizations of the Banach Contraction Principle. We also prove Edelstein theorem in the setting of b-metric spaces.

1. Introduction

The notion of a b-metric space was introduced by Bakhtin [1] and Czerwik [4]. This is a generalization of the usual notion of a metric space. Several authors reformulated many problems of fixed point theory in b-metric spaces. In 2005, Echenique [6] studied fixed point theory by using graphs. Afterwards, Espinola and Kirk [7] applied fixed point results in graph theory. Recently, Jachymski 9 proved a sufficient condition for a selfmap f of a metric space (X, d) to be a Picard operator and applied it to the Kelisky-Rivlin theorem on iterates of the Bernstein operators on the space $C[0,1]$. Motivated by the idea given in [9], we reformulated some important fixed point results in metric spaces to b-metric spaces endowed with a graph. We also prove b-metric version of Edelstein theorem. Finally, an example is provided to support our main result.

2. SOME BASIC CONCEPTS

We begin with some basic notations and definitions in b-metric spaces.
Definition 2.1. 4] Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is said to be a b-metric on X if the following conditions hold:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq s(d(x, z)+d(z, y))$ for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space.
If $s=1$, then the triangle inequality in a metric space is satisfied, however it does not hold true when $s>1$.

[^0]Definition 2.2. 2] Let (X, d) be a b-metric space, $x \in X$ and $\left(x_{n}\right)$ be a sequence in X. Then
(i) $\left(x_{n}\right)$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x(n \rightarrow \infty)$.
(ii) $\left(x_{n}\right)$ is Cauchy if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$.
(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Definition 2.3. The sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in a b-metric space (X, d) are called Cauchy equivalent if each of them is a Cauchy sequence and $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Definition 2.4. Let (X, d) be a b-metric space. A mapping $f: X \rightarrow X$ is called a Picard operator (abbr., PO) if f has a unique fixed point $u \in X$ and $\lim _{n \rightarrow \infty} f^{n} x=u$ for all $x \in X$.

We next review some basic notions in graph theory.
Let (X, d) be a metric space. We assume that G is a directed graph (digraph) with the set $V(G)$ of its vertices coincides with X and a set of edges $E(G)$ contains all the loops, i.e., $E(G) \supseteq \Delta$, where $\Delta=\{(x, x): x \in X\}$. We also assume that G has no parallel edges and so we can identify G with the pair $(V(G), E(G))$. G may be considered as a weighted graph by assigning to each edge the distance between its vertices. By G^{-1} we denote the graph obtained from G by reversing the direction of edges i.e., $E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}$. We treat \tilde{G} as a directed graph for which the set of its edges is symmetric. Under this convention, $E(\tilde{G})=E(G) \cup E\left(G^{-1}\right)$. Our graph theory notations and terminology are standard and can be found in all graph theory books, like [3, 5, 8. If x, y are vertices of the digraph G, then a path in G from x to y of length $n(n \in \mathbb{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{n}$ of $n+1$ vertices such that $x_{0}=x, x_{n}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1,2, \cdots, n$. A graph G is connected if there is a path between any two vertices of G. G is weakly connected if \tilde{G} is connected. If G is such that $E(G)$ is symmetric and x is a vertex in G, then the subgraph G_{x} consisting of all edges and vertices which are contained in some path beginning at x is called the component of G containing x. We note that $V\left(G_{x}\right)=[x]_{G}$, where $[x]_{G}$ is the equivalence class of the following relation R defined on $V(G)$ by the rule:

$$
y R z \text { if there is a path in } G \text { from } y \text { to } z .
$$

Clearly, G_{x} is connected.
Definition 2.5. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $G=(V(G), E(G))$ be a graph. A mapping $f: X \rightarrow X$ is called a Banach G-contraction or simply G-contraction if f preserves edges of G, i.e.,

$$
\forall x, y \in X,((x, y) \in E(G) \Rightarrow(f x, f y) \in E(G))
$$

and f decreases weights of edges of G in the following way: there exists $\alpha \in\left(0, \frac{1}{s}\right)$ such that

$$
d(f x, f y) \leq \alpha d(x, y)
$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

Any Banach contraction is a G_{0}-contraction, where the graph G_{0} is defined by $E\left(G_{0}\right)=X \times X$. But it is worth mentioning that a Banach G-contraction need not be a Banach contraction (see Remark 3.9).

Remark 2.6. If f is a G-contraction, then f is both $a G^{-1}$-contraction and a \tilde{G}-contraction.

Definition 2.7. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $f: X \rightarrow X$ be a given mapping. We say that f is continuous at $x_{0} \in X$ if for every sequence $\left(x_{n}\right)$ in X, we have $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty \Longrightarrow f x_{n} \rightarrow f x_{0}$ as $n \rightarrow \infty$. If f is continuous at each point $x_{0} \in X$, then we say that f is continuous on X.

Definition 2.8. Let (X, d) be a b-metric space with the coefficient $s \geq 1$. A mapping $f: X \rightarrow X$ is called orbitally continuous if for all $x, y \in X$ and any sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of positive integers,

$$
f^{k_{n}} x \rightarrow y \text { implies } f\left(f^{k_{n}} x\right) \rightarrow \text { fy as } n \rightarrow \infty
$$

Definition 2.9. Let (X, d) be a b-metric space with the coefficient $s \geq 1$. A mapping $f: X \rightarrow X$ is called G-continuous if given $x \in X$ and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$,

$$
x_{n} \rightarrow x \text { and }\left(x_{n}, x_{n+1}\right) \in E(G) \text { for } n \in \mathbb{N} \text { imply } f x_{n} \rightarrow f x
$$

Definition 2.10. Let (X, d) be a b-metric space with the coefficient $s \geq 1$. A mapping $f: X \rightarrow X$ is called orbitally G-continuous if for all $x, y \in X$ and any sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of positive integers,

$$
f^{k_{n}} x \rightarrow y \text { and }\left(f^{k_{n}} x, f^{k_{n+1}} x\right) \in E(G) \text { for } n \in \mathbb{N} \text { imply } f\left(f^{k_{n}} x\right) \rightarrow f y
$$

It is easy to observe the following relations: continuity \Rightarrow orbital continuity \Rightarrow orbital G-continuity; continuity $\Rightarrow G$-continuity \Rightarrow orbital G-continuity.

3. Main Results

In this section we always assume that (X, d) is a b-metric space, and G is a directed graph such that $V(G)=X$ and $E(G) \supseteq \Delta$. We begin with the following lemma.

Lemma 3.1. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and f : $X \rightarrow X$ be a G-contraction with a constant $\alpha \in\left(0, \frac{1}{s}\right)$. Then, given $x \in X$ and $y \in[x]_{\tilde{G}}$, there is $r(x, y) \geq 0$ such that

$$
d\left(f^{n} x, f^{n} y\right) \leq \alpha^{n} r(x, y), \forall n \in \mathbb{N}
$$

Proof. Let $x \in X$ and $y \in[x]_{\tilde{G}}$. Then there is a path $\left(x_{i}\right)_{i=0}^{N}$ in \tilde{G} from x to y, i.e., $x_{0}=x, x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(\tilde{G})$ for $i=1,2, \cdots, N$. Since f is a G-contraction, it is also a \tilde{G}-contraction. By mathematical induction, we have

$$
\left(f^{n} x_{i-1}, f^{n} x_{i}\right) \in E(\tilde{G}) \text { and } d\left(f^{n} x_{i-1}, f^{n} x_{i}\right) \leq \alpha^{n} d\left(x_{i-1}, x_{i}\right)
$$

for all $n \in \mathbb{N}$ and $i=1,2, \cdots, N$.
Now,

$$
\begin{aligned}
d\left(f^{n} x, f^{n} y\right) \leq & s d\left(f^{n} x_{0}, f^{n} x_{1}\right)+s^{2} d\left(f^{n} x_{1}, f^{n} x_{2}\right)+\cdots \\
& +s^{N-1} d\left(f^{n} x_{N-2}, f^{n} x_{N-1}\right)+s^{N-1} d\left(f^{n} x_{N-1}, f^{n} x_{N}\right) \\
\leq & \alpha^{n} \sum_{i=1}^{N} s^{i} d\left(x_{i-1}, x_{i}\right), \text { since } s \geq 1
\end{aligned}
$$

If we set $r(x, y)=\sum_{i=1}^{N} s^{i} d\left(x_{i-1}, x_{i}\right)$, then

$$
d\left(f^{n} x, f^{n} y\right) \leq \alpha^{n} r(x, y), \forall n \in \mathbb{N}
$$

Theorem 3.2. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$, and let the triple (X, d, G) has the following property:
(*) For any sequence $\left(x_{n}\right)$ in X, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \geq 1$, then there exists a subsequence $\left(x_{k_{n}}\right)$ of $\left(x_{n}\right)$ such that $\left(x_{k_{n}}, x\right) \in E(G)$ for all $n \geq 1$.
Let $f: X \rightarrow X$ be a G-contraction, and $X_{f}=\{x \in X:(x, f x) \in E(G)\}$. Then,
(i) for any $x \in X_{f},\left.f\right|_{[x]_{\tilde{G}}}$ is a \tilde{G}_{x}-contraction and $\left.f\right|_{[x]_{\tilde{G}}}$ is a $P O$.
(ii) if $X_{f} \neq \emptyset$ and G is weakly connected, then f is a $P O$.

Proof. (i) Let $x \in X_{f}$. Then $(x, f x) \in E(G)$ and so $f x \in[x]_{\tilde{G}}$. Consequently, it follows that $[x]_{\tilde{G}}=[f x]_{\tilde{G}}$.
We first show that $\left.f\right|_{[x]_{\tilde{G}}}$ is a \tilde{G}_{x}-contraction.
Let $y \in[x]_{\tilde{G}}$. Then there exists a path $\left(x_{i}\right)_{i=0}^{p}$ from x to y where $x_{0}=x, x_{p}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(\tilde{G})$ for $i=1,2, \cdots, p$. Since f is a G-contraction, it is also a \tilde{G}-contraction. Then, $\left(x_{i-1}, x_{i}\right) \in E(\tilde{G})$ implies $\left(f x_{i-1}, f x_{i}\right) \in E(\tilde{G})$ for $i=$ $1,2, \cdots, p$. This proves that $\left(f x_{i}\right)_{i=0}^{p}$ is a path in \tilde{G} from $f x$ to $f y$ and hence $f y \in[f x]_{\tilde{G}}=[x]_{\tilde{G}}$. Thus, $y \in[x]_{\tilde{G}} \Rightarrow f y \in[x]_{\tilde{G}}$.

Let $(y, z) \in E\left(\tilde{G}_{x}\right)$. By our preceeding discussion, we have $f y, f z \in[x]_{\tilde{G}}$. Since $y \in[x]_{\tilde{G}}$, there exists a path $\left(y_{i}\right)_{i=0}^{q-1}$ in \tilde{G} from x to y where $y_{0}=x, y_{q-1}=y$. This combining with $(y, z) \in E\left(\tilde{G}_{x}\right)$, there is a path $\left(y_{i}\right)_{i=0}^{q}$ in \tilde{G} from x to z where $y_{q}=z$. Let $\left(z_{i}\right)_{i=0}^{r}$ be a path in \tilde{G} from x to $f x$ where $z_{0}=x=y_{0}, z_{r}=f x=f y_{0}$. As f preserves edges of $\tilde{G},\left(x, z_{1}, z_{2}, \cdots, f x, f y_{1}, \cdots, f y_{q-1}, f y_{q}\right)$ is a path in \tilde{G} from x to $f z$. In particular, $\left(f y_{q-1}, f y_{q}\right) \in E\left(\tilde{G}_{x}\right)$ i.e., $(f y, f z) \in E\left(\tilde{G}_{x}\right)$. Therefore, $\left.f\right|_{[x]_{\tilde{G}}}$ is a \tilde{G}_{x}-contraction. Since $f x \in[x]_{\tilde{G}}$, by applying Lemma 3.1, we get

$$
\begin{equation*}
d\left(f^{n} x, f^{n+1} x\right) \leq \alpha^{n} r(x, f x), \forall n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

For $m, n \in \mathbb{N}$ with $m>n$, using condition (3.1), we have

$$
\begin{aligned}
d\left(f^{n} x, f^{m} x\right) & \leq s d\left(f^{n} x, f^{n+1} x\right)+s^{2} d\left(f^{n+1} x, f^{n+2} x\right)+\cdots \\
& +s^{m-n-1} d\left(f^{m-2} x, f^{m-1} x\right)+s^{m-n-1} d\left(f^{m-1} x, f^{m} x\right) \\
& \leq\left[s \alpha^{n}+s^{2} \alpha^{n+1}+\cdots+s^{m-n-1} \alpha^{m-2}+s^{m-n-1} \alpha^{m-1}\right] r(x, f x) \\
& \leq s \alpha^{n}\left[1+s \alpha+\cdots+(s \alpha)^{m-n-2}+(s \alpha)^{m-n-1}\right] r(x, f x) \\
& \leq \frac{s \alpha^{n}}{1-s \alpha} r(x, f x) \\
& \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
\end{aligned}
$$

Therefore, $\left(f^{n} x\right)$ is a Cauchy sequence in $[x]_{\tilde{G}}$.
If $y \in[x]_{\tilde{G}}$, then $f y \in[x]_{\tilde{G}}=[y]_{\tilde{G}}$. By an argument similar to that used above, $\left(f^{n} y\right)$ is a Cauchy sequence in $[x]_{\tilde{G}}$.

Again, by using Lemma 3.1,

$$
d\left(f^{n} x, f^{n} y\right) \leq \alpha^{n} r(x, y) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence, $\left(f^{n} x\right)$ and $\left(f^{n} y\right)$ are Cauchy equivalent. By completeness of $X,\left(f^{n} x\right)$ converges to some $u \in X$.

Now,

$$
d\left(f^{n} y, u\right) \leq s d\left(f^{n} y, f^{n} x\right)+s d\left(f^{n} x, u\right)
$$

gives that, $\lim _{n \rightarrow \infty} f^{n} y=u$. Thus, $\lim _{n \rightarrow \infty} f^{n} y=u$, for all $y \in[x]_{\tilde{G}}$.
As f is a G-contraction and $(x, f x) \in E(G)$, it follows that $\left(f^{n} x, f^{n+1} x\right) \in E(G)$ for all $n \in \mathbb{N}$. By property (*), there exists a subsequence $\left(f^{k_{n}} x\right)$ of $\left(f^{n} x\right)$ such that $\left(f^{k_{n}} x, u\right) \in E(G)$. We note that $\left(x, f x, f^{2} x, \cdots, f^{k_{1}} x, u\right)$ is a path in G and hence it is also a path in \tilde{G} from x to u. This proves that $u \in[x]_{\tilde{G}}$.

Furthermore,

$$
\begin{aligned}
d(u, f u) & \leq \operatorname{sd}\left(u, f^{k_{n}+1} x\right)+\operatorname{sd}\left(f^{k_{n}+1} x, f u\right) \\
& \leq \operatorname{sd}\left(u, f^{k_{n}+1} x\right)+\operatorname{\alpha sd}\left(f^{k_{n}} x, u\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

This implies that, $d(u, f u)=0$ i.e., $f u=u$. Thus, $\left.f\right|_{[x]_{\tilde{G}}}$ has a fixed point $u \in[x]_{\tilde{G}}$.
The next is to show that the fixed point is unique. Assume that there is another point $v \in[x]_{\tilde{G}}$ such that $f v=v$. Since $\lim _{n \rightarrow \infty} f^{n} y=u$, for all $y \in[x]_{\tilde{G}}$, we have $\lim _{n \rightarrow \infty} f^{n} v=u$ and so, $v=u$. Thus, $\left.f\right|_{[x]_{G}}$ is a PO.
(ii) If G is weakly connected, then $[x]_{\tilde{G}}=X$. Therefore, it follows from (i) that f has a unique fixed point u in X and $\lim _{n \rightarrow \infty} f^{n} x=u$, for all $x \in X$. Thus, f is a PO.

The following corollary is the b-metric version of Banach Contraction Principle.
Corollary 3.3. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$ and the mapping $f: X \rightarrow X$ be such that

$$
d(f x, f y) \leq \alpha d(x, y)
$$

for all $x, y \in X$, where $\alpha \in\left(0, \frac{1}{s}\right)$ is a constant. Then f has a unique fixed point u in X and $f^{n} x \rightarrow u$ for all $x \in X$.

Proof. The proof can be obtained from Theorem 3.2 by taking $G=G_{0}$, where G_{0} is the complete graph $(X, X \times X)$.

Corollary 3.4. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$ and let \preceq be a partial ordering on X such that given $x, y \in X$, there is a sequence $\left(x_{i}\right)_{i=0}^{N}$ such that $x_{0}=x, x_{N}=y$ and for all $i=1,2, \cdots, N, x_{i-1}$ and x_{i} are comparable. Let $f: X \rightarrow X$ be such that f preserves comparable elements and

$$
d(f x, f y) \leq \alpha d(x, y)
$$

for all $x, y \in X$ with $x \preceq y$ or $y \preceq x$ and $\alpha \in\left(o, \frac{1}{s}\right)$ is a constant. Assume that the triple (X, d, \preceq) has the following property:

For any sequence $\left(x_{n}\right)$ in X, if $x_{n} \rightarrow x$ and x_{n}, x_{n+1} are comparable for all $n \geq 1$, then there exists a subsequence $\left(x_{k_{n}}\right)$ of $\left(x_{n}\right)$ such that $x_{k_{n}}, x$ are comparable for all $n \geq 1$.

If there exists $x_{0} \in X$ with $x_{0} \preceq f x_{0}$ or $f x_{0} \preceq x_{0}$, then f is a PO.
Proof. The proof can be obtained from Theorem 3.2 by taking $G=G_{2}=\{(x, y) \in$ $X \times X: x \preceq y$ or $y \preceq x\}$.

Theorem 3.5. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$, and let $f: X \rightarrow X$ be a G-contraction such that f is orbitally G-continuous. Let $X_{f}=\{x \in X:(x, f x) \in E(G)\}$. Then,
(i) for any $x \in X_{f}$ and $y \in[x]_{\tilde{G}}$, $\left(f^{n} y\right)$ converges to a fixed point of f and $\lim _{n \rightarrow \infty} f^{n} y$ does not depend on y.
(ii) ${ }^{n \rightarrow \infty} X_{f} \neq \emptyset$ and G is weakly connected, then f is a $P O$.

Proof. (i) Let $x \in X_{f}$ i.e., $(x, f x) \in E(G)$. Let $y \in[x]_{\tilde{G}}$. Then proceeding as in Theorem 3.2, we can show that the sequences $\left(f^{n} x\right)$ and ($f^{n} y$) are Cauchy equivalent. By completeness of $X,\left(f^{n} x\right)$ converges to some $u \in X$.

Now,

$$
\begin{aligned}
d\left(f^{n} y, u\right) & \leq \operatorname{sd}\left(f^{n} y, f^{n} x\right)+\operatorname{sd}\left(f^{n} x, u\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

which gives that, $\lim _{n \rightarrow \infty} f^{n} y=u$ for all $y \in[x]_{\tilde{G}}$.
We now show that u is a fixed point of f.
Since f preserves edges of G and $(x, f x) \in E(G)$, it follows that $\left(f^{n} x, f^{n+1} x\right) \in$ $E(G)$ for all $n \in \mathbb{N}$. Again, f being orbitally G-continuous, we have $f\left(f^{n} x\right) \rightarrow f u$ which implies that $f u=u$ since, simultaneously, $f\left(f^{n} x\right)=f^{n+1} x \rightarrow u$. Thus, ($f^{n} y$) converges to a fixed point u of f.
(ii) If $x \in X_{f}$ and G is weakly connected, then $[x]_{\tilde{G}}=X$ and so by $(i), f$ is a PO.

Corollary 3.6. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$ and let \preceq be a partial ordering on X such that given $x, y \in X$, there is a sequence $\left(x_{i}\right)_{i=0}^{N}$ such that $x_{0}=x, x_{N}=y$ and for all $i=1,2, \cdots, N, x_{i-1}$ and x_{i} are comparable. Let $f: X \rightarrow X$ be an orbitally continuous function such that f preserves comparable elements and

$$
d(f x, f y) \leq \alpha d(x, y)
$$

for all $x, y \in X$ with $x \preceq y$ or $y \preceq x$ and $\alpha \in\left(o, \frac{1}{s}\right)$ is a constant. If there exists $x_{0} \in X$ with $x_{0} \preceq f x_{0}$ or $f x_{0} \preceq x_{0}$, then f is a PO.
Proof. The proof can be obtained from Theorem 3.5 by taking $G=G_{2}=\{(x, y) \in$ $X \times X: x \preceq y$ or $y \preceq x\}$.

The following theorem is the b-metric version of Edelstein theorem.
Theorem 3.7. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$ and ϵ-chainable for some $\epsilon>0$, i.e., given $x, y \in X$, there is $N \in \mathbb{N}$ and a sequence $\left(x_{i}\right)_{i=0}^{N}$ such that $x_{0}=x, x_{N}=y$ and $d\left(x_{i-1}, x_{i}\right)<\epsilon$ for $i=1,2, \cdots, N$. Let $f: X \rightarrow X$ be such that for all $x, y \in X$,

$$
\begin{equation*}
d(x, y)<\epsilon \Rightarrow d(f x, f y))<\alpha d(x, y) \tag{3.2}
\end{equation*}
$$

where $\alpha \in\left(0, \frac{1}{s}\right)$ is a constant. Then f is a $P O$.
Proof. It follows from condition 3.2 that f is continuous on X.
Let $x \in X$ be arbitrary. If $f x=x$, then a fixed point of f is assured. Therefore, we assume that $f x \neq x$. Since X is ϵ-chainable, there exists a sequence $\left(x_{i}\right)_{i=0}^{N}$ such that $x_{0}=x, x_{N}=f x$ and $d\left(x_{i-1}, x_{i}\right)<\epsilon$ for $i=1,2, \cdots, N$.
By using condition (3.2), we have

$$
d\left(f x_{i-1}, f x_{i}\right)<\alpha d\left(x_{i-1}, x_{i}\right)<\alpha \epsilon<\epsilon
$$

and therefore

$$
\begin{aligned}
d\left(f^{2} x_{i-1}, f^{2} x_{i}\right) & =d\left(f\left(f x_{i-1}\right), f\left(f x_{i}\right)\right) \\
& <\alpha d\left(f x_{i-1}, f x_{i}\right) \\
& <\alpha^{2} \epsilon
\end{aligned}
$$

In general, for any positive integer p, we get

$$
d\left(f^{p} x_{i-1}, f^{p} x_{i}\right)<\alpha^{p} \epsilon, \text { for } i=1,2, \cdots, N
$$

Now,

$$
\begin{align*}
d\left(f^{p} x, f^{p+1} x\right)= & d\left(f^{p} x, f^{p}(f x)\right) \\
= & d\left(f^{p} x_{0}, f^{p} x_{N}\right) \\
\leq & s d\left(f^{p} x_{0}, f^{p} x_{1}\right)+s^{2} d\left(f^{p} x_{1}, f^{p} x_{2}\right)+\cdots \\
& +s^{N-1} d\left(f^{p} x_{N-2}, f^{p} x_{N-1}\right)+s^{N-1} d\left(f^{p} x_{N-1}, f^{p} x_{N}\right) \\
< & \left(s+s^{2}+\cdots+s^{N-1}+s^{N}\right) \alpha^{p} \epsilon \\
= & k \alpha^{p} \epsilon, \tag{3.3}
\end{align*}
$$

where $k=\left(s+s^{2}+\cdots+s^{N-1}+s^{N}\right)$.
For $m, n \in \mathbb{N}$ with $m>n$ and using condition (3.3), we obtain

$$
\begin{aligned}
d\left(f^{n} x, f^{m} x\right) \leq & s d\left(f^{n} x, f^{n+1} x\right)+s^{2} d\left(f^{n+1} x, f^{n+2} x\right)+\cdots \\
& +s^{m-n-1} d\left(f^{m-2} x, f^{m-1} x\right)+s^{m-n-1} d\left(f^{m-1} x, f^{m} x\right) \\
< & k \epsilon\left(s \alpha^{n}+s^{2} \alpha^{n+1}+\cdots+s^{m-n-1} \alpha^{m-2}+s^{m-n} \alpha^{m-1}\right) \\
= & k \epsilon s \alpha^{n}\left(1+(s \alpha)+(s \alpha)^{2}+\cdots+(s \alpha)^{m-n-1}\right) \\
< & k \epsilon s \alpha^{n} \frac{1}{1-s \alpha}, \text { since } s \alpha<1 \\
\rightarrow & 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

This shows that $\left(f^{n} x\right)$ is a Cauchy sequence in (X, d). Since (X, d) is complete, $\left(f^{n} x\right)$ converges to some point $u \in X$. Continuity of f implies that $f\left(f^{n} x\right) \rightarrow f u$. This gives that, $f u=u$ since, simultaneously, $f\left(f^{n} x\right)=f^{n+1} x \rightarrow u$. Thus, u is a
fixed point of f.
We now show that u is the unique fixed point of f. If possible, suppose that there is another point $v(\neq u)$ in X such that $f v=v$. Then, by ϵ-chainability, there exists a sequence $\left(y_{i}\right)_{i=0}^{r}$ such that $y_{0}=u, y_{r}=v$ and $d\left(y_{i-1}, y_{i}\right)<\epsilon$ for $i=1,2, \cdots, r$.
Then,

$$
\begin{aligned}
d(u, v)= & d\left(f^{n} u, f^{n} v\right) \\
= & d\left(f^{n} y_{0}, f^{n} y_{r}\right) \\
\leq & s d\left(f^{n} y_{0}, f^{n} y_{1}\right)+s^{2} d\left(f^{n} y_{1}, f^{n} y_{2}\right)+\cdots \\
& +s^{r-1} d\left(f^{n} y_{r-2}, f^{n} y_{r-1}\right)+s^{r-1} d\left(f^{n} y_{r-1}, f^{n} y_{r}\right) \\
< & \left(s+s^{2}+\cdots+s^{r-1}+s^{r}\right) \alpha^{n} \epsilon \\
= & k_{1} \alpha^{n} \epsilon, \text { where } k_{1}=\left(s+s^{2}+\cdots+s^{r-1}+s^{r}\right) \\
\rightarrow & 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

which is a contradiction. Therefore, $u=v$.
We now show that $\lim _{n \rightarrow \infty} f^{n} x=u$ for all $x \in X$.
If possible, suppose that $\lim _{n \rightarrow \infty} f^{n} y=w$ for some $y \in X$. Then, by our preceding discussion, it follows that w is a fixed point of f. Since u is the unique fixed point of f, we must have $u=w$ and hence $\lim _{n \rightarrow \infty} f^{n} x=u$ for all $x \in X$.
Thus, f is a PO.
We conclude with some examples in favour of our main result.
Example 3.8. Let $X=\mathbb{R}$ and define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient $s=2$. Let G be a directed graph such that $V(G)=X$ and $E(G)=\Delta \cup\left\{\left(0, \frac{1}{8^{n}}\right): n=0,1,2, \cdots\right\}$. Any sequence $\left(x_{n}\right)$ in X with the property $\left(x_{n}, x_{n+1}\right) \in E(G)$ must be a constant sequence. Consequently it follows that the triple (X, d, G) has the property (*). Let $f: X \rightarrow X$ be defined by

$$
\begin{aligned}
f x & =\frac{x}{8}, \quad \text { if } x \neq \frac{7}{8} \\
& =1, \text { if } x=\frac{7}{8}
\end{aligned}
$$

For $\left(0, \frac{1}{8^{n}}\right) \in E(G)$, we have

$$
d\left(f(0), f\left(\frac{1}{8^{n}}\right)\right)=d\left(0, \frac{1}{8^{n+1}}\right)=\frac{1}{8^{2 n+2}}=\frac{1}{64} \cdot \frac{1}{8^{2 n}}=\alpha d\left(0, \frac{1}{8^{n}}\right)
$$

where $\alpha=\frac{1}{64} \in\left(0, \frac{1}{s}\right)$ is a constant. Also, f preserves edges of G. Therefore, f is a Banach G-contraction. Clearly, $0 \in X_{f}$. Thus, we have all the conditions of Theorem 3.2 and $\left.f\right|_{[0]_{\tilde{G}}}$ is a $P O$.

Remark 3.9. In Example 3.8, f is a Banach G-contraction with constant $\alpha=\frac{1}{64}$ but it is not a Banach contraction. In fact, if $x=\frac{7}{8}, y=1$, then

$$
d(f x, f y)=d\left(1, \frac{1}{8}\right)=\frac{49}{64}>\alpha \cdot \frac{1}{64}=\alpha d\left(\frac{7}{8}, 1\right)
$$

for any $\alpha \in\left(0, \frac{1}{s}\right)$. So, f is not a Banach contraction.

The next example shows that the property $(*)$ in Theorem 3.2 is necessary.
Example 3.10. Let $X=[0,1]$ and define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient $s=2$. Let G be a directed graph such that $V(G)=X$ and $E(G)=\{(0,0)\} \cup\{(x, y)$: $(x, y) \in(0,1] \times(0,1], x \geq y\}$. Let $f: X \rightarrow X$ be defined by

$$
\begin{aligned}
f x & =\frac{x}{5}, \quad \text { if } x \in(0,1] \\
& =1, \quad \text { if } x=0
\end{aligned}
$$

Clearly, f preserves edges of G. Moreover, for $(x, y) \in E(G)$, we have

$$
d(f x, f y)=\frac{1}{25} d(x, y)
$$

where $\alpha=\frac{1}{25} \in\left(0, \frac{1}{s}\right)$ is a constant. Therefore, f is a Banach G-contraction. It is easy to verify that $X_{f}=(0,1]$ and $f^{n} x \rightarrow 0$ for all $x \in X$ but f has no fixed point. Consequently it follows that for any $x \in X_{f},\left.f\right|_{[x]_{\tilde{G}}}$ is not a PO. We observe that the property $(*)$ does not hold. In fact, $\left(x_{n}\right)$ is a sequence in X with $x_{n} \rightarrow 0$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in \mathbb{N}$ where $x_{n}=\frac{1}{n}$. But there exists no subsequence $\left(x_{k_{n}}\right)$ of $\left(x_{n}\right)$ such that $\left(x_{k_{n}}, 0\right) \in E(G)$.

Remark 3.11. In Example 3.10, the graph G is not weakly connected because there is no path in \tilde{G} from 0 to 1. Moreover, f is a Banach G-contraction with constant $\alpha=\frac{1}{25}$ but it is not a Banach contraction. In fact, if $x=0, y=1$, then

$$
d(f x, f y)=d\left(1, \frac{1}{5}\right)=\frac{16}{25}>\alpha d(0,1)
$$

for any $\alpha \in\left(0, \frac{1}{s}\right)$. So, f is not a Banach contraction.
Acknowledgments. The authors are grateful to the referees for their valuable comments.

References

[1] I.A.Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal.,Gos. Ped. Inst. Unianowsk, 30, 1989, 26-37.
[2] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4, 2009, 285-301.
[3] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1, 1993, 5-11.
[5] G. Chartrand, L. Lesniak, and P. Zhang, Graph and digraph, CRC Press, New York, NY, USA, 2011.
[6] F. Echenique, A short and constructive proof of Tarski's fixed point theorem, Internat. J. Game Theory, 33, 2005, 215-218.
[7] R. Espinola and W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153, 2006, 1046-1055.
[8] J. I. Gross and J. Yellen, Graph theory and its applications, CRC Press, New York, NY, USA, 1999.
[9] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136, 2008, 1359-1373.

Sushanta Kumar Mohanta
Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata 700126, West Bengal, India

E-mail address: smwbes@yahoo.in

Shilpa Patra
Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata 700126, West Bengal, India

E-mail address: shilpapatrabarasat@gmail.com

[^0]: 2010 Mathematics Subject Classification. 54H25, 47H10.
 Key words and phrases. b-metric; directed graph; G-contraction; fixed point.
 © 2017 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted August 12, 2017. Published September 9, 2017.
 The second author is thankful to UGC, India.
 Communicated by Denny H. Leung.

