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PICARD OPERATORS IN b-METRIC SPACES VIA DIGRAPHS

SUSHANTA KUMAR MOHANTA AND SHILPA PATRA

Abstract. In this paper we prove some fixed point theorems in b-metric

spaces endowed with a graph which are generalizations of the Banach Con-

traction Principle. We also prove Edelstein theorem in the setting of b-metric
spaces.

1. Introduction

The notion of a b-metric space was introduced by Bakhtin[1] and Czerwik[4].
This is a generalization of the usual notion of a metric space. Several authors
reformulated many problems of fixed point theory in b-metric spaces. In 2005,
Echenique[6] studied fixed point theory by using graphs. Afterwards, Espinola and
Kirk[7] applied fixed point results in graph theory. Recently, Jachymski[9] proved a
sufficient condition for a selfmap f of a metric space (X, d) to be a Picard operator
and applied it to the Kelisky-Rivlin theorem on iterates of the Bernstein operators
on the space C[0, 1]. Motivated by the idea given in[9], we reformulated some
important fixed point results in metric spaces to b-metric spaces endowed with a
graph. We also prove b-metric version of Edelstein theorem. Finally, an example is
provided to support our main result.

2. Some basic concepts

We begin with some basic notations and definitions in b-metric spaces.

Definition 2.1. [4] Let X be a nonempty set and s ≥ 1 be a given real number.
A function d : X×X → R+ is said to be a b-metric on X if the following conditions
hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

If s = 1, then the triangle inequality in a metric space is satisfied, however it
does not hold true when s > 1.
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Definition 2.2. [2] Let (X, d) be a b-metric space, x ∈ X and (xn) be a sequence
in X. Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by

lim
n→∞

xn = x or xn → x(n→∞).

(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Definition 2.3. The sequences (xn) and (yn) in a b-metric space (X, d) are
called Cauchy equivalent if each of them is a Cauchy sequence and d(xn, yn) → 0
as n→∞.

Definition 2.4. Let (X, d) be a b-metric space. A mapping f : X → X is called
a Picard operator (abbr., PO) if f has a unique fixed point u ∈ X and lim

n→∞
fnx = u

for all x ∈ X.

We next review some basic notions in graph theory.
Let (X, d) be a metric space. We assume that G is a directed graph (digraph) with
the set V (G) of its vertices coincides with X and a set of edges E(G) contains all
the loops, i.e., E(G) ⊇ ∆, where ∆ = {(x, x) : x ∈ X}. We also assume that G has
no parallel edges and so we can identify G with the pair (V (G), E(G)). G may be
considered as a weighted graph by assigning to each edge the distance between its
vertices. By G−1 we denote the graph obtained from G by reversing the direction
of edges i.e., E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}. We treat G̃ as a
directed graph for which the set of its edges is symmetric. Under this convention,
E(G̃) = E(G)∪E(G−1). Our graph theory notations and terminology are standard
and can be found in all graph theory books, like [3, 5, 8]. If x, y are vertices of the
digraph G, then a path in G from x to y of length n (n ∈ N) is a sequence (xi)

n
i=0 of

n+ 1 vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, 2, · · · , n.
A graph G is connected if there is a path between any two vertices of G. G is
weakly connected if G̃ is connected. If G is such that E(G) is symmetric and x is
a vertex in G, then the subgraph Gx consisting of all edges and vertices which are
contained in some path beginning at x is called the component of G containing x.
We note that V (Gx) = [x]G, where [x]G is the equivalence class of the following
relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

Clearly, Gx is connected.

Definition 2.5. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and
let G = (V (G), E(G)) be a graph. A mapping f : X → X is called a Banach
G-contraction or simply G-contraction if f preserves edges of G, i.e.,

∀x, y ∈ X, ((x, y) ∈ E(G)⇒ (fx, fy) ∈ E(G)) ,

and f decreases weights of edges of G in the following way:
there exists α ∈ (0, 1s ) such that

d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X with (x, y) ∈ E(G).
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Any Banach contraction is a G0-contraction, where the graph G0 is defined by
E(G0) = X × X. But it is worth mentioning that a Banach G-contraction need
not be a Banach contraction (see Remark 3.9).

Remark 2.6. If f is a G-contraction, then f is both a G−1-contraction and a
G̃-contraction.

Definition 2.7. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and let
f : X → X be a given mapping. We say that f is continuous at x0 ∈ X if for every
sequence (xn) in X, we have xn → x0 as n→∞ =⇒ fxn → fx0 as n→∞. If f
is continuous at each point x0 ∈ X, then we say that f is continuous on X.

Definition 2.8. Let (X, d) be a b-metric space with the coefficient s ≥ 1. A
mapping f : X → X is called orbitally continuous if for all x, y ∈ X and any
sequence (kn)n∈N of positive integers,

fknx→ y implies f(fknx)→ fy as n→∞.
Definition 2.9. Let (X, d) be a b-metric space with the coefficient s ≥ 1. A

mapping f : X → X is called G-continuous if given x ∈ X and a sequence (xn)n∈N,

xn → x and (xn, xn+1) ∈ E(G) for n ∈ N imply fxn → fx.

Definition 2.10. Let (X, d) be a b-metric space with the coefficient s ≥ 1. A
mapping f : X → X is called orbitally G-continuous if for all x, y ∈ X and any
sequence (kn)n∈N of positive integers,

fknx→ y and (fknx, fkn+1x) ∈ E(G) for n ∈ N imply f(fknx)→ fy.

It is easy to observe the following relations:
continuity ⇒ orbital continuity ⇒ orbital G-continuity;
continuity ⇒ G-continuity ⇒ orbital G-continuity.

3. Main Results

In this section we always assume that (X, d) is a b-metric space, and G is a
directed graph such that V (G) = X and E(G) ⊇ ∆.
We begin with the following lemma.

Lemma 3.1. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and f :
X → X be a G-contraction with a constant α ∈ (0, 1s ). Then, given x ∈ X and
y ∈ [x]G̃, there is r(x, y) ≥ 0 such that

d(fnx, fny) ≤ αn r(x, y), ∀n ∈ N.

Proof. Let x ∈ X and y ∈ [x]G̃. Then there is a path (xi)
N
i=0 in G̃ from x to

y, i.e., x0 = x, xN = y and (xi−1, xi) ∈ E(G̃) for i = 1, 2, · · · , N . Since f is a

G-contraction, it is also a G̃-contraction. By mathematical induction, we have

(fnxi−1, f
nxi) ∈ E(G̃) and d (fnxi−1, f

nxi) ≤ αn d(xi−1, xi)

for all n ∈ N and i = 1, 2, · · · , N .
Now,

d(fnx, fny) ≤ s d(fnx0, f
nx1) + s2 d(fnx1, f

nx2) + · · ·
+sN−1 d(fnxN−2, f

nxN−1) + sN−1 d(fnxN−1, f
nxN )

≤ αn
N∑
i=1

sid(xi−1, xi), since s ≥ 1.
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If we set r(x, y) =

N∑
i=1

sid(xi−1, xi), then

d(fnx, fny) ≤ αn r(x, y), ∀n ∈ N.

�

Theorem 3.2. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1,
and let the triple (X, d,G) has the following property:
(∗) For any sequence (xn) in X, if xn → x and (xn, xn+1) ∈ E(G) for all n ≥ 1,
then there exists a subsequence (xkn) of (xn) such that (xkn , x) ∈ E(G) for all
n ≥ 1.
Let f : X → X be a G-contraction, and Xf = {x ∈ X : (x, fx) ∈ E(G)}. Then,

(i) for any x ∈ Xf , f |[x]G̃ is a G̃x-contraction and f |[x]G̃ is a PO.

(ii) if Xf 6= ∅ and G is weakly connected, then f is a PO.

Proof. (i) Let x ∈ Xf . Then (x, fx) ∈ E(G) and so fx ∈ [x]G̃. Consequently, it
follows that [x]G̃ = [fx]G̃.

We first show that f |[x]G̃ is a G̃x-contraction.

Let y ∈ [x]G̃. Then there exists a path (xi)
p
i=0 from x to y where x0 = x, xp = y

and (xi−1, xi) ∈ E(G̃) for i = 1, 2, · · · , p. Since f is a G-contraction, it is also

a G̃-contraction. Then, (xi−1, xi) ∈ E(G̃) implies (fxi−1, fxi) ∈ E(G̃) for i =

1, 2, · · · , p. This proves that (fxi)
p
i=0 is a path in G̃ from fx to fy and hence

fy ∈ [fx]G̃ = [x]G̃. Thus, y ∈ [x]G̃ ⇒ fy ∈ [x]G̃.

Let (y, z) ∈ E(G̃x). By our preceeding discussion, we have fy, fz ∈ [x]G̃. Since

y ∈ [x]G̃, there exists a path (yi)
q−1
i=0 in G̃ from x to y where y0 = x, yq−1 = y.

This combining with (y, z) ∈ E(G̃x), there is a path (yi)
q
i=0 in G̃ from x to z where

yq = z. Let (zi)
r
i=0 be a path in G̃ from x to fx where z0 = x = y0, zr = fx = fy0.

As f preserves edges of G̃, (x, z1, z2, · · · , fx, fy1, · · · , fyq−1, fyq) is a path in G̃ from

x to fz. In particular, (fyq−1, fyq) ∈ E(G̃x) i.e., (fy, fz) ∈ E(G̃x). Therefore,

f |[x]G̃ is a G̃x-contraction. Since fx ∈ [x]G̃, by applying Lemma 3.1, we get

d(fnx, fn+1x) ≤ αn r(x, fx), ∀n ∈ N. (3.1)

For m,n ∈ N with m > n, using condition (3.1), we have

d(fnx, fmx) ≤ s d(fnx, fn+1x) + s2 d(fn+1x, fn+2x) + · · ·
+sm−n−1 d(fm−2x, fm−1x) + sm−n−1 d(fm−1x, fmx)

≤
[
sαn + s2αn+1 + · · ·+ sm−n−1αm−2 + sm−n−1αm−1] r(x, fx)

≤ sαn
[
1 + sα+ · · ·+ (sα)m−n−2 + (sα)m−n−1

]
r(x, fx)

≤ sαn

1− sα
r(x, fx)

→ 0 as m, n→∞.

Therefore, (fnx) is a Cauchy sequence in [x]G̃.

If y ∈ [x]G̃, then fy ∈ [x]G̃ = [y]G̃. By an argument similar to that used above,
(fny) is a Cauchy sequence in [x]G̃.
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Again, by using Lemma 3.1,

d(fnx, fny) ≤ αn r(x, y)→ 0 as n→∞.

Hence, (fnx) and (fny) are Cauchy equivalent. By completeness of X, (fnx) con-
verges to some u ∈ X.

Now,

d(fny, u) ≤ sd(fny, fnx) + sd(fnx, u)

gives that, lim
n→∞

fny = u. Thus, lim
n→∞

fny = u, for all y ∈ [x]G̃.

As f is a G-contraction and (x, fx) ∈ E(G), it follows that (fnx, fn+1x) ∈ E(G)
for all n ∈ N. By property (∗), there exists a subsequence

(
fknx

)
of (fnx) such

that
(
fknx, u

)
∈ E(G). We note that

(
x, fx, f2x, · · · , fk1x, u

)
is a path in G and

hence it is also a path in G̃ from x to u. This proves that u ∈ [x]G̃.

Furthermore,

d(u, fu) ≤ sd(u, fkn+1x) + sd(fkn+1x, fu)

≤ sd(u, fkn+1x) + αsd(fknx, u)

→ 0 as n→∞.

This implies that, d(u, fu) = 0 i.e., fu = u. Thus, f |[x]G̃ has a fixed point u ∈ [x]G̃ .

The next is to show that the fixed point is unique. Assume that there is another
point v ∈ [x]G̃ such that fv = v. Since lim

n→∞
fny = u, for all y ∈ [x]G̃, we have

lim
n→∞

fnv = u and so, v = u. Thus, f |[x]G̃ is a PO.

(ii) If G is weakly connected, then [x]G̃ = X. Therefore, it follows from (i) that
f has a unique fixed point u in X and lim

n→∞
fnx = u, for all x ∈ X. Thus, f is a

PO. �

The following corollary is the b-metric version of Banach Contraction Principle.

Corollary 3.3. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1
and the mapping f : X → X be such that

d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X, where α ∈ (0, 1s ) is a constant. Then f has a unique fixed point u
in X and fnx→ u for all x ∈ X.

Proof. The proof can be obtained from Theorem 3.2 by taking G = G0, where G0

is the complete graph (X,X ×X). �

Corollary 3.4. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1
and let � be a partial ordering on X such that given x, y ∈ X, there is a sequence

(xi)
N
i=0 such that x0 = x, xN = y and for all i = 1, 2, · · · , N , xi−1 and xi are

comparable. Let f : X → X be such that f preserves comparable elements and

d(fx, fy) ≤ αd(x, y)
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for all x, y ∈ X with x � y or y � x and α ∈ (o, 1s ) is a constant. Assume that the
triple (X, d,�) has the following property:

For any sequence (xn) in X, if xn → x and xn, xn+1 are comparable for all
n ≥ 1, then there exists a subsequence (xkn

) of (xn) such that xkn
, x are compara-

ble for all n ≥ 1.

If there exists x0 ∈ X with x0 � fx0 or fx0 � x0, then f is a PO.

Proof. The proof can be obtained from Theorem 3.2 by taking G = G2 = {(x, y) ∈
X ×X : x � y or y � x}. �

Theorem 3.5. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1,
and let f : X → X be a G-contraction such that f is orbitally G-continuous. Let
Xf = {x ∈ X : (x, fx) ∈ E(G)}. Then,

(i) for any x ∈ Xf and y ∈ [x]G̃, (fny) converges to a fixed point of f and
lim

n→∞
fny does not depend on y.

(ii) if Xf 6= ∅ and G is weakly connected, then f is a PO.

Proof. (i) Let x ∈ Xf i.e., (x, fx) ∈ E(G). Let y ∈ [x]G̃. Then proceeding as in
Theorem 3.2, we can show that the sequences (fnx) and (fny) are Cauchy equiva-
lent. By completeness of X, (fnx) converges to some u ∈ X.

Now,

d(fny, u) ≤ sd(fny, fnx) + sd(fnx, u)

→ 0 as n→∞,
which gives that, lim

n→∞
fny = u for all y ∈ [x]G̃.

We now show that u is a fixed point of f .
Since f preserves edges of G and (x, fx) ∈ E(G), it follows that

(
fnx, fn+1x

)
∈

E(G) for all n ∈ N. Again, f being orbitally G-continuous, we have f(fnx) → fu
which implies that fu = u since, simultaneously, f(fnx) = fn+1x → u. Thus,
(fny) converges to a fixed point u of f .
(ii) If x ∈ Xf and G is weakly connected, then [x]G̃ = X and so by (i), f is a
PO. �

Corollary 3.6. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1
and let � be a partial ordering on X such that given x, y ∈ X, there is a sequence

(xi)
N
i=0 such that x0 = x, xN = y and for all i = 1, 2, · · · , N , xi−1 and xi are com-

parable. Let f : X → X be an orbitally continuous function such that f preserves
comparable elements and

d(fx, fy) ≤ αd(x, y)

for all x, y ∈ X with x � y or y � x and α ∈ (o, 1s ) is a constant. If there exists
x0 ∈ X with x0 � fx0 or fx0 � x0, then f is a PO.

Proof. The proof can be obtained from Theorem 3.5 by taking G = G2 = {(x, y) ∈
X ×X : x � y or y � x}. �
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The following theorem is the b-metric version of Edelstein theorem.

Theorem 3.7. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1
and ε-chainable for some ε > 0, i.e., given x, y ∈ X, there is N ∈ N and a sequence

(xi)
N
i=0 such that x0 = x, xN = y and d(xi−1, xi) < ε for i = 1, 2, · · · , N . Let

f : X → X be such that for all x, y ∈ X,

d(x, y) < ε⇒ d(fx, fy)) < αd(x, y) (3.2)

where α ∈ (0, 1s ) is a constant. Then f is a PO.

Proof. It follows from condition (3.2) that f is continuous on X.
Let x ∈ X be arbitrary. If fx = x, then a fixed point of f is assured. Therefore,

we assume that fx 6= x. Since X is ε-chainable, there exists a sequence (xi)
N
i=0

such that x0 = x, xN = fx and d(xi−1, xi) < ε for i = 1, 2, · · · , N .
By using condition (3.2), we have

d(fxi−1, fxi) < αd(xi−1, xi) < αε < ε.

and therefore

d(f2xi−1, f
2xi) = d(f(fxi−1), f(fxi))

< αd(fxi−1, fxi)

< α2ε.

In general, for any positive integer p, we get

d(fpxi−1, f
pxi) < αpε, for i = 1, 2, · · · , N.

Now,

d(fpx, fp+1x) = d(fpx, fp(fx))

= d(fpx0, f
pxN )

≤ sd(fpx0, f
px1) + s2d(fpx1, f

px2) + · · ·
+sN−1d(fpxN−2, f

pxN−1) + sN−1d(fpxN−1, f
pxN )

< (s+ s2 + · · ·+ sN−1 + sN )αpε

= kαpε, (3.3)

where k = (s+ s2 + · · ·+ sN−1 + sN ).
For m, n ∈ N with m > n and using condition (3.3), we obtain

d(fnx, fmx) ≤ sd(fnx, fn+1x) + s2d(fn+1x, fn+2x) + · · ·
+sm−n−1d(fm−2x, fm−1x) + sm−n−1d(fm−1x, fmx)

< k ε
(
sαn + s2αn+1 + · · ·+ sm−n−1αm−2 + sm−nαm−1)

= k εs αn
(
1 + (sα) + (sα)2 + · · ·+ (sα)m−n−1

)
< k εsαn 1

1− sα
, since sα < 1

→ 0 as n→∞.

This shows that (fnx) is a Cauchy sequence in (X, d). Since (X, d) is complete,
(fnx) converges to some point u ∈ X. Continuity of f implies that f(fnx)→ fu.
This gives that, fu = u since, simultaneously, f(fnx) = fn+1x → u. Thus, u is a
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fixed point of f .

We now show that u is the unique fixed point of f . If possible, suppose that
there is another point v( 6= u) in X such that fv = v. Then, by ε-chainability,
there exists a sequence (yi)

r
i=0 such that y0 = u, yr = v and d(yi−1, yi) < ε for

i = 1, 2, · · · , r.
Then,

d(u, v) = d(fnu, fnv)

= d(fny0, f
nyr)

≤ sd(fny0, f
ny1) + s2d(fny1, f

ny2) + · · ·
+sr−1d(fnyr−2, f

nyr−1) + sr−1d(fnyr−1, f
nyr)

< (s+ s2 + · · ·+ sr−1 + sr)αnε

= k1α
nε, where k1 = (s+ s2 + · · ·+ sr−1 + sr)

→ 0 as n→∞,
which is a contradiction. Therefore, u = v.

We now show that lim
n→∞

fnx = u for all x ∈ X.

If possible, suppose that lim
n→∞

fny = w for some y ∈ X. Then, by our preceding

discussion, it follows that w is a fixed point of f . Since u is the unique fixed point
of f , we must have u = w and hence lim

n→∞
fnx = u for all x ∈ X.

Thus, f is a PO. �

We conclude with some examples in favour of our main result.

Example 3.8. Let X = R and define d : X×X → R+ by d(x, y) =| x−y |2 for all
x, y ∈ X. Then (X, d) is a complete b-metric space with the coefficient s = 2. Let G
be a directed graph such that V (G) = X and E(G) = ∆∪{(0, 1

8n ) : n = 0, 1, 2, · · · }.
Any sequence (xn) in X with the property (xn, xn+1) ∈ E(G) must be a constant
sequence. Consequently it follows that the triple (X, d,G) has the property (∗). Let
f : X → X be defined by

fx =
x

8
, if x 6= 7

8

= 1, if x =
7

8
.

For (0, 1
8n ) ∈ E(G), we have

d

(
f(0), f(

1

8n
)

)
= d

(
0,

1

8n+1

)
=

1

82n+2
=

1

64
.

1

82n
= αd

(
0,

1

8n

)
where α = 1

64 ∈ (0, 1s ) is a constant. Also, f preserves edges of G. Therefore, f
is a Banach G-contraction. Clearly, 0 ∈ Xf . Thus, we have all the conditions of
Theorem 3.2 and f |[0]G̃ is a PO.

Remark 3.9. In Example 3.8, f is a Banach G-contraction with constant α = 1
64

but it is not a Banach contraction. In fact, if x = 7
8 , y = 1, then

d(fx, fy) = d(1,
1

8
) =

49

64
> α.

1

64
= αd(

7

8
, 1)

for any α ∈ (0, 1s ). So, f is not a Banach contraction.
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The next example shows that the property (∗) in Theorem 3.2 is necessary.

Example 3.10. Let X = [0, 1] and define d : X×X → R+ by d(x, y) =| x−y |2
for all x, y ∈ X. Then (X, d) is a complete b-metric space with the coefficient s = 2.
Let G be a directed graph such that V (G) = X and E(G) = {(0, 0)} ∪ {(x, y) :
(x, y) ∈ (0, 1]× (0, 1], x ≥ y}. Let f : X → X be defined by

fx =
x

5
, if x ∈ (0, 1]

= 1, if x = 0.

Clearly, f preserves edges of G. Moreover, for (x, y) ∈ E(G), we have

d(fx, fy) =
1

25
d(x, y)

where α = 1
25 ∈ (0, 1s ) is a constant. Therefore, f is a Banach G-contraction. It is

easy to verify that Xf = (0, 1] and fnx→ 0 for all x ∈ X but f has no fixed point.
Consequently it follows that for any x ∈ Xf , f |[x]G̃ is not a PO. We observe that

the property (∗) does not hold. In fact, (xn) is a sequence in X with xn → 0 and
(xn, xn+1) ∈ E(G) for all n ∈ N where xn = 1

n . But there exists no subsequence
(xkn

) of (xn) such that (xkn
, 0) ∈ E(G).

Remark 3.11. In Example 3.10, the graph G is not weakly connected because
there is no path in G̃ from 0 to 1. Moreover, f is a Banach G-contraction with
constant α = 1

25 but it is not a Banach contraction. In fact, if x = 0, y = 1, then

d(fx, fy) = d(1,
1

5
) =

16

25
> αd(0, 1)

for any α ∈ (0, 1s ). So, f is not a Banach contraction.

Acknowledgments. The authors are grateful to the referees for their valuable
comments.

References

[1] I.A.Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal.,Gos.

Ped. Inst. Unianowsk, 30, 1989, 26-37.

[2] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int.
J. Mod. Math., 4, 2009, 285-301.

[3] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Pub-
lishing Co., Inc., New York, 1976.

[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1,

1993, 5-11.
[5] G. Chartrand, L. Lesniak, and P. Zhang, Graph and digraph, CRC Press, New York, NY,

USA, 2011.
[6] F. Echenique, A short and constructive proof of Tarski’s fixed point theorem, Internat. J.

Game Theory, 33, 2005, 215-218.

[7] R. Espinola and W. A. Kirk, Fixed point theorems in R-trees with applications to graph

theory, Topology Appl., 153, 2006, 1046-1055.
[8] J. I. Gross and J. Yellen, Graph theory and its applications, CRC Press, New York, NY,

USA, 1999.
[9] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc.

Amer. Math. Soc., 136, 2008, 1359-1373.

Sushanta Kumar Mohanta

Department of Mathematics, West Bengal State University, Barasat, 24 Parganas
(North), Kolkata 700126, West Bengal, India

E-mail address: smwbes@yahoo.in



PICARD OPERATORS IN b-METRIC SPACES · · · 51

Shilpa Patra

Department of Mathematics, West Bengal State University, Barasat, 24 Parganas

(North), Kolkata 700126, West Bengal, India
E-mail address: shilpapatrabarasat@gmail.com


