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INTEGRAL REPRESENTATION OF THE GENERALIZED

BESSEL LINEAR FUNCTIONAL.

KARIMA ALI KHELIL, RIDHA SFAXI, AMMAR BOUKHEMIS

Abstract. In this paper, we are interested in the integral representation prob-

lem of the generalized Bessel linear functional B[ν], well-known by the Pearson

equation that it satisfies:
(
x3B[ν]

)′ − (
2(ν + 1)x2 +

1

2

)
B[ν] = 0. By means of

some integral estimation and technical results including important inequalities

of the incomplete gamma function and the exponential integral, we obtain an

integral representation of B[ν], for every real number ν 6= −n, n ≥ 0. The con-
nection formula between B[ν] and the classical Bessel linear functional B(α)

allows us to obtain an integral representation of B(α), for all real number
α 6= −(n/2), n ≥ 0.

1. Introduction

Let P be the linear space of polynomials in one variable with complex coefficients
and let P ′ be its algebraic dual. We denote by 〈U , f〉 the action of U in P ′ on f in
P and by (U)n := 〈U , xn〉 , n ≥ 0, the moments of U with respect to the monomial
sequence {xn}n≥0. When (U)0 = 1, the linear functional U is said to be normalized.
Let us define some operations in P ′, (see [1, 6, 9]). For any U in P ′, any q in P and
any complex numbers a, b, c with a 6= 0, let DU = U ′, qU , haU , τbU and σU be
respectively the derivative, the left multiplication, the translation, the homothetic
and the pair part of the linear functionals defined by duality:

〈U ′, f〉 := −〈U , f ′〉 ,
〈qU , f〉 := 〈U , qf〉 ,
〈haU , f〉 := 〈U , haf〉 = 〈U , f (ax)〉 ,
〈τbU , f〉 := 〈U , τ−bf〉 = 〈U , f (x+ b)〉 ,
〈σU , f〉 := 〈U , σf〉 = 〈U , f(x2)〉, f ∈ P.

Consider the symmetric generalized Bessel linear functional B[ν] given by its
moments [2]:

(B[ν])2n =
(−1)nΓ(ν + 1)

22nΓ(n+ ν + 1)
, n ≥ 0,

(B[ν])2n+1 = 0, n ≥ 0,
(1)
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where ν 6= − (n+ 1) , n ≥ 0 and here Γ is the gamma function.
The linear functional B[ν] is symmetric, i.e., (B[ν])2n+1 = 0, n ≥ 0, and semiclas-
sical (see [4, 6]) of class one satisfying the Pearson equation [2]:(

x3B[ν]
)′ − (2(ν + 1)x2 +

1

2

)
B[ν] = 0.

By referring to [2], the linear functional B[ν] for ν ≥ (1/2), has the following
integral representation:

〈B[ν], p (x)〉 = S−1
ν

∫ +∞

−∞
Uν(x)p (x) dx, p ∈ P,

with Sν =
∫ +∞
−∞ Uν (x) dx and where the function Uν is in L1(R) and has the

following expression:

Uν(x) =


0, x = 0,

1

x2

∫ +∞

|x|

(
|x|
t

)2ν+1

e
1

4t2
− 1

4x2 s(t2)dt, x 6= 0,
(2)

where s is the Stieltjes function given by s (x) =

{
0, x ≤ 0,

e−x
1
4 sinx

1
4 , x > 0.

By Fubini’s theorem, Sν can be written as follows:

Sν = 4

∫ +∞

0

Gν (t) sin t dt, (3)

with Gν (t) = fν (t) e−t, fν (t) = t−4ν−1e
1

4t4 ϕν− 3
2
(t2), ϕν (t) =

∫ t

0

x2ν+2e−
1

4x2 dx.

Notice that y = Uν(x) is the solution of the first-order linear differential equation:{
(x3y)′ −

(
2(ν + 1)x2 + 1

2

)
y = g(x),

y(0) = 0,
(4)

where the function g(x) = − |x| s(x2) represents the null linear functional.
The main purpose of this paper is to give an integral representation of B[ν], for all

real number ν 6= −n, n ≥ 0. To reach our goal, we need to treat two cases separately,
the first one is ν ≥ 0 and the second is ν < 0. In the first case, our approach is based
essentially on the use of the fundamental Lemma 9 . The connection formulas that
we highlight between the function ϕν and the incomplete gamma function (resp. the
exponential integral), as well as some double-inequalities established thereafter, will
be important in the success of this approach. In the second cases, we use another
approach based on a new connection formula between the linear functional B[ν] and
B[ν + 1]. Finally, thanks to the connection formula between B[ν] and the classical
Bessel linear functional B(α), (see [2, 6, 9]), we obtain an integral representation of
B(α), for all real number α 6= −(n/2), n ≥ 0.

The rest of this paper is organized as follows. In section 2, we develop some
basic results and technical lemmas for future use. Section 3 is devoted to the
integral representation problem of the generalized as well as the classical Bessel
linear functional.
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2. Preliminaries results.

2.1. Some properties of the functions ϕν , fν and Gν . For each real number
ν, recall that the function ϕν is given by

ϕν(x) =

∫ x

0

t2ν+2e−
1

4t2 dt, x ≥ 0.

Upon the change of variable y =
1

4t2
, we get

ϕν (x) =
1

22ν+4
Γ

(
−ν − 3

2
,

1

4x2

)
, x > 0, (5)

where for every x > 0 and a ∈ R, Γ(a, x) =

∫ +∞

x

ta−1e−tdt, is the incomplete

gamma function, known by the following useful properties (see [3, 9]),

Γ(a, x) = (a− 1)Γ(a− 1, x) + xa−1e−x, Γ(1, x) = e−x. (6)

xa

x+ 1− a
e−x ≤ Γ(a, x) ≤ (1 + x)xa−1

x+ 2− a
e−x, a ≤ 1. (7)

1

2
e−x ln(1 +

2

x
) ≤ E1(x) ≤ e−x ln(1 +

1

x
), (8)

and E1(x) = Γ(0, x) is the exponential integral.
By substituting of (6) into (7) and then replacing a by a+ 1, we obtain

xa

x+ 1− a
e−x ≤ Γ(a, x) ≤ xa

x− a
e−x, a ≤ 0. (9)

Lemma 1. For every ν ≥ −(3/2), we have

2x2ν+5

1 + 2(2ν + 5)x2
e−

1
4x2 ≤ ϕν(x) ≤ 2x2ν+5

1 + 2(2ν + 3)x2
e−

1
4x2 , x > 0. (10)

Proof. Immediate from (5) and (9).

Using (3) and (10), the following double-inequalities hold,

2x3

1 + 4(ν + 1)x4
≤ fν(x) ≤ 2x3

1 + 4νx4
, (11)

2x3

1 + 4(ν + 1)x4
e−x ≤ Gν(x) ≤ 2x3

1 + 4νx4
e−x, for all x ≥ 0 and ν ≥ 0. (12)

In view of (12), it is clear thatGν(0) = 0, Gν(x) > 0 for all x > 0, and lim
x→+∞

Gν (x) =

0, for every ν ≥ 0. Thus, Gν has a maximum for x = x satisfying G′ν(x) = 0, i.e.,
f ′ν(x) = fν(x).

Lemma 2. For every ν ≥ 0, the function Gν is decreasing on [2π,+∞[ .

Proof. Let t > 0, be an extremum of the function Gν . Then, G′ν(t) = 0. Equiva-

lently, f ′ν(t) = fν(t). By (11), we get fν(t) = 2t3

1+(4ν+1)t4+t5 ≥
2t3

1+4(ν+1)t4 . An easy

computation leads to t ≤ 3 < 2π. This finishes the proof of the lemma.

The following double-inequality will be useful for the sequel.



4 K. ALI KHELIL, R. SFAXI, A. BOUKHEMIS

Lemma 3. For every ν ≥ −(3/2), the following double-inequality holds,

x2ν+3e
−1

4x2 ln(1 + 8x2)

2
(
2 + (2ν + 3) ln(1 + 4x2)

) ≤ ϕν(x) ≤ 1

2
x2ν+3e

−1

4x2 ln(1 + 4x2), x > 0. (13)

Proof. Let ν ≥ −(3/2). We can write ϕν(x) = 1
2

∫ x
0
t2ν+3 d

dt

(
E1( 1

4t2 )
)
dt.

Upon integration by parts, we get

ϕν(x) =
1

2
x2ν+3E1(

1

4x2
)− 1

2
(2ν + 3)

∫ x

0

t2ν+2E1(
1

4t2
)dt, x > 0.

Using (8), (3) and the fact that the function x 7→ ln(1 + x) is increasing on the
interval ]−1,+∞[, it follows that

ϕν(x) ≥ 1

4
x2ν+3e−

1
4x2 ln(1 + 8x2)− 1

2
(2ν + 3) ln(1 + 4x2)ϕν(x), x > 0.

This implies, ϕν(x) ≥ 1
2
x2ν+3e

− 1
4x2 ) ln(1+8x2)

2+(2ν+3) ln(1+4x2) , x > 0.

For the same reason, we find the right-hand inequality of (13), as follows:

ϕν(x) ≤ 1

2
x2ν+3E1(

1

4x2
) ≤ 1

2
x2ν+3e−

1
4x2 ln(1 + 4x2), x > 0.

The proof of lemma 3, is complete.

According to lemma 3 and by (5), we can establish the following new double-
inequality for the incomplete gamma function:

1

2
xae−x

ln(1 +
2

x
)

1− a ln(1 +
1

x
)
≤ Γ(a, x) ≤ xae−x ln(1 +

1

x
), x > 0, a ≤ 0.

Again by lemma 3 and by (3), the following double-inequalities is achieved,

1

4

ln(1 + 8x4)

x[1 + ν ln(1 + 4x4)]
≤ fν(x) ≤ 1

2

ln(1 + 4x4)

x
, (14)

1

4

ln(1 + 8x4)

x[1 + ν ln(1 + 4x4)]
e−x ≤ Gν(x) ≤ 1

2

ln(1 + 4x4)

x
e−x, x > 0, ν ≥ 0. (15)

2.2. Some technical results on integral estimation.

Proposition 4. Let g : [0,+∞[→ [0,+∞[ be a decreasing function, continuous on
[0,+∞[ and differentiable on ]0,+∞[. Then, for every ρ ≥ 0, we have∫ x

0

tρg(t)e−tdt ≥ Ωρ(x)g(x), x ≥ 0, (16)

where Ωρ(x) = Γ(ρ+ 1)e−x
∑
n≥0

xn+ρ+1

Γ(n+2+ρ) .

In particular, Ωp(x) = p!
[
1− e−x

∑p
k=0

xk

k!

]
, for all integer p ≥ 0.

Proof. When ρ = 0, the assumption g is decreasing on [0,+∞[ implies,∫ x

0

g(t)e−tdt ≥ g(x)

∫ x

0

e−tdt = g(x)Ω0(x), x > 0,

where Ω0(x) = 1− e−x = e−x
∑
n≥0

xn+1

(n+1)! .

Hence, (16) is valid for ρ = 0.
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If ρ > 0, setting Rρ(t) = tρg(t), t > 0 and Rρ(0) = 0. By assumption g is
decreasing on [0,+∞[ and differentiable on ]0,+∞[, we can write tR′ρ(t)−ρRρ(t) =

tρ+1g′(t) ≤ 0, t > 0. This yields,

ρtnRρ(t)e
−t ≥ tn+1R′ρ(t)e

−t, t > 0. (17)

For every x > 0, let {Jn(x)}n≥0 be the sequence of nonnegative real numbers,

Jn(x) :=
1

Γ(n+ 1 + ρ)

∫ x

0

tnRρ(t)e
−tdt, n ≥ 0.

Using (17), it is easy to see that Γ(n+ 1 + ρ)Jn(x) ≥ 1
ρ

∫ x
0
tn+1e−tR′ρ(t)dt, n ≥ 0.

Upon integration by parts, we obtain

Γ(n+ 1 + ρ)Jn(x) ≥ 1

ρ

[
xn+1e−xRρ(x)−

∫ x

0

tne−t(n+ 1− t)Rρ(t)dt
]
, n ≥ 0.

Equivalently, we have Jn(x) − Jn+1(x) ≥ xn+1

Γ(n+2+ρ)e
−xRρ(x), n ≥ 0. This implies,

J0(x) ≥ Jn(x)+e−xRρ(x)
∑n−1
l=0

xl+1

Γ(l+2+ρ) , n ≥ 1. Since Jn(x) ≥ 0 for all n ≥ 0 and

x > 0, we get J0(x) ≥ e−xRρ(x)
∑n−1
l=0

xl+1

Γ(l+2+ρ) , n ≥ 1. If n tends to +∞, then∫ x
0
tρg(t)e−tdt ≥ Ωρ(x)g(x), where Ωρ(x) = Γ(ρ+ 1)e−x

∑
n≥0

xn+ρ+1

Γ(n+2+ρ) .

Hence, the inequality (16) is valid for all ρ ≥ 0 and all x > 0.
If ρ = p : an nonnegative integer, we have

Ωp(x) = p!e−x
∑
n≥0

xn+p+1

(n+ 1 + p)!
= p!

(
1− e−x

p∑
k=0

xk

k!

)
, x > 0.

This finishes the proof of the proposition.

Furthermore, the following inequalities are needed for what comes next.

Proposition 5. For every x > 0, we have∫ x

0

t4e−t

1 + 4(ν + 1)t4
dt ≥ Ω4(x)

1

1 + 4(ν + 1)x4
, ν ≥ −1, (18)∫ x

0

e−t ln(1 + 8t4)dt ≥ Ω4(x)
ln(1 + 8x4)

x4
, (19)

where Ω4(x) = 24
(
1− e−x

∑4
k=0

xk

k!

)
.

Proof. To establish (18), we use proposition 4, with ρ = p = 4 and g(t) =
1

1+4(ν+1)t4 , for t ≥ 0. Clearly, g′(t) = −16(ν+1)t3

(1+4(ν+1)t4)2 ≤ 0, for t ≥ 0 and ν ≥ −1.

To establish (19), we use proposition 4, with ρ = p = 4 and g(t) = 8h(8t4), for

all t ≥ 0, where h(t) = ln(1+t)
t , for all t > 0 and h(0) = 1. We can show that,

g′(t) = 256t3h′(8t4) ≤ 0, t > 0. Indeed, it suffices to show that h′(t) ≤ 0, for all

t ≥ 0. Clearly, h′(t) = l(t)
t2 , for all t > 0, where l(t) = t

t+1 − ln(t+ 1), for all t ≥ 0.

Since l′(t) = − t
(t+1)2 ≤ 0, for all t ≥ 0, then l(t) ≤ l(0) = 0, for all t ≥ 0.

Hence, h′(t) ≤ 0, for all t ≥ 0 and then g′(t) ≤ 0, for all t ≥ 0.



6 K. ALI KHELIL, R. SFAXI, A. BOUKHEMIS

2.3. Some asymptotic behavior results. Let h be a function defined on R, and
having the following properties:

P1. h(x) = f(
√
|x|), for every x in R, where f(x) =

∑
n≥0 anx

n is an entire
function.

P2. The function h and all its derivatives, are with rapid decay at ±∞, i.e., for
every integers k ≥ 0 and n ≥ 0,

sup
x∈R
| xkh(n)(x) |< +∞.

Now, for any complex number ν and any function h satisfying the properties Pi,
i = 1, 2, let us consider the following first-order linear differential equation:

Eν(h) :

{ (
x3y
)′ − [2 (ν + 1)x2 + 1

2

]
y = h (x) ,

y(0) = −2h(0).
(20)

The solution of (20) is defined on the real line R and given by

y(x) =

 − |x|2ν−1
e
−1

4x2

∫ +∞

|x|
t−2(ν+1)e

1
4t2 h (t) dt, x 6= 0,

−2h(0), x = 0.

(21)

Lemma 6. The function y given by (21) is even, infinitely differentiable on R−{0}
and fulfills the following properties:

(i) When | x |→ +∞, we have
∣∣xny(n)(x)

∣∣ = O( 1
|x|k+2 ), for each positive integer

k such that k > kν = max {0,−2<(ν)− 1} , and each integer n ≥ 0.
(ii) The function y ∈ L1(R) ∩ C0(R).

Proof. By assumption P2, for every integers k ≥ 0 and n ≥ 0, there exist Mk,n > 0
and ηk,n > 0, such that ∣∣∣h(n)(x)

∣∣∣ ≤ Mk,n

| x |k
, | x |> ηk,n. (22)

i.e., for every integers k ≥ 0 and n ≥ 0,
∣∣h(n)(x)

∣∣ = O
(

1
|x|k
)
, | x |→ +∞.

By (21), (22) with n = 0, and since e
1

4t2 ≤ e
1

4x2 , for all t ≥ |x| , we obtain

|y(x)| ≤ |x|2<(ν)−1
e
−1

4x2

∫ +∞

|x|
t−2(<(ν)+1)e

1
4t2 |h(t)| dt ≤ Mk,0

(k + 2< (ν) + 1)

1

|x|k+2
,

for all x ∈ R such that |x| > ηk,0 and all integer k > kν = max {0,−2<(ν)− 1} .
So, for every integer k > kν ,

|y (x)| = O

(
1

|x|k+2

)
, | x |→ +∞. (23)

By (20), it is clear that
∣∣xk+3y′

∣∣ ≤ ((2 |ν|+ 1)x2 + 1
2

) ∣∣xky(x)
∣∣+
∣∣xkh(x)

∣∣, and on
account of (22) and (23), it follows that for every integer k > kν ,

| xy′(x) |= O

(
1

|x|k+2

)
, | x |→ +∞. (24)
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By induction on the integer n ≥ 0, let’s show that for every integer k > kν , when
| x |→ +∞, we have ∣∣∣xny(n)(x)

∣∣∣ = O

(
1

|x|k+2

)
, | x |→ +∞.

For n = 0, and n = 1, the recurrence property is true by (23) and (24) respectively.
Suppose that the recurrence property is valid up to the order m (m ≥ 1), and let’s
show that it remains valid to the order m+ 1.
By (20), after differentiating m−times and by using the Leibnitz’s formula,

x3y(m+1)(x) =
(
(2ν − 3m− 1)x2 +

1

2

)
y(m)(x) +m(4ν − 3m+ 1)xy(m−1)(x)+

m(m− 1)(2ν −m+ 1)y(m−2)(x) + h(m)(x),

then

| x3+k+my(m+1)(x) |≤ (2 |ν|+ 3m+ 1)x2 +
1

2

∣∣∣xk+my(m)(x)
∣∣∣ (25)

+m(4 | ν | +3m+ 1) | x1+k+my(m−1)(x) |

+m(m− 1)(2 |ν|+m+ 1)
∣∣∣xk+my(m−2)(x)

∣∣∣+
∣∣∣xk+mh(m)(x)

∣∣∣ ,
By induction hypothesis and (22), each one of the quantities

∣∣x2+k+my(m)(x)
∣∣,∣∣x1+k+my(m−1)(x)

∣∣, ∣∣xk+my(m−2)(x)
∣∣ and

∣∣xk+mh(m)(x)
∣∣, is equal to O (1) . So, by

(25),
∣∣xm+1y(m+1)(x)

∣∣ = O
(

1
|x|k+2

)
, | x |→ +∞, for every integer k > kν .

Hence, (i) holds.
When | x |< 1, we start by noting that

y(x) = w(|x|)− |x|2ν−1
e
−1

4x2

∫ +∞

1

t−2(ν+1)e
1

4t2 h (t) dt, (26)

where w(x) =

 −x2ν−1e
−1

4x2

∫ 1

x

t−2(ν+1)e
1

4t2 h (t) dt, x > 0,

−2h (0) , x = 0.

Clearly, y(x) = w(|x|) + o(e
−1

8x2 ). By applying the Hospital’s rule to the ratio,

lim
x→0+

w (x) = lim
x→0+

−
∫ 1

x

t−2(ν+1)e
1

4t2 h (t) dt

x−2ν+1e
1

4x2

= lim
x→0+

h (x)

(−2ν + 1)x2 − 1
2

= −2h (0) = w(0).

So, lim
x→0+

w (x) = −2h (0) . Hence, lim
x→0

y (x) = −2h (0). Thus, y is continuous on R.

Accordingly, the function y given by (21), is in L1(R) ∩ C0(R).
Hence, (ii) holds.

Lemma 7. For x small enough the function y given by (21) has the following
expansion:

y(x) =

N∑
l=0

αl |x|
l
2 + o

(
|x|

N
2

)
, for every integer N ≥ 4,
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where the α′ls are the coefficients of the series representation of f appearing in
property P1 and given by{

al − ( l2 − 1− 2ν)αl−4 + 1
2αl = 0, 0 ≤ l ≤ N,

α−l = 0, l ≥ 1, and αl = 0, l ≥ N + 1.

Proof. Recall that the function w given by (26) is continuous on [0,+∞[ and infin-
itely differentiable on ]0,+∞[ . It is easy to show that w satisfies{ (

x3w
)′ − [2 (ν + 1)x2 + 1

2

]
w = h(x),

w(0) = −2h(0), w(1) = 0,
(27)

where the function h satisfies the properties Pi, i = 1, 2.
For any integer N ≥ 4, let (αl)l≥0 be the sequence of complex numbers given by{

al − ( l2 − 1− 2ν)αl−4 + 1
2αl = 0, 0 ≤ l ≤ N,

α−l = 0, l ≥ 1, αl = 0, l ≥ N + 1,
(28)

and CN be the function defined on [0,+∞[ by

CN (x) =

{ (
w(x)−

∑N
l=0 alx

l
2

)
x−

N+1
2 , x > 0,

−2[aN+1 + (2νN + 1)αN−3], x = 0,
(29)

where νN = ν − N+1
4 .

Substituting (29) into (27) and taking (28) into account, the function v defined on
[0,+∞[ by v(x) = CN (x), satisfies{

(x3v)′ − [2(νN + 1)x2 + 1
2 ]v = fN (

√
x),

v(0) = −2[aN+1 + (2νN + 1)αN−3], v(1) = −
∑N
l=0 αl,

where the function fN is defined on the interval [0,+∞[ by

fN (t) =

{ ∑∞
l=0

[
al+N+1 + (− l

2 + 2νN + 1)αl+N−3

]
tl, t > 0,

aN+1 + αN−3(2νN + 1), t = 0.

The resolution of the last first-order differential equation gives us

v (x) = CN (x) =
[
− e 1

4

N∑
l=0

αl −
∫ 1

x

t−2(νN+1)fN (
√
t)e

1
4t2 dt

]
x2νN−1e

−1

4x2 , x > 0.

If we apply the Hospital’s rule to the ratio, we get

lim
x→0+

CN (x) = lim
x→0+

−e 1
4

∑N
l=0 αl −

∫ 1

x
t−2(νN+1)fN

(√
t
)
e

1
4t2 dt

x−2νN+1e
1

4x2

= lim
x→0+

fN (
√
x)

(−2νN + 1)x2 − 1
2

= −2fN (0) = CN (0).

Thus, the function x 7→ CN (x) is continuous on [0,+∞[ .
Accordingly, for x small enough, the function given by (21) has the following ex-
pansion:

y(x) =

N∑
l=0

αl |x|
l
2 + |x|

N+1
2 RN (|x|),

where the function RN is continuous on [0,+∞[ and given by

RN (x) =

{
x2νN−1VN (x)e

−1

4x2 , x > 0,
−2fN (0) , x = 0,
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VN (x) = −e 1
4

∑N
l=0 αl −

∫ 1

x
t−2(νN+1)fN (

√
t)e

1
4t2 dt−

∫ +∞
1

t−2(ν+1)f(
√
t)e

1
4t2 dt.

Lemma 8. The function y given by (21) satisfies:

lim
x→0

xny(n)(x) =

{
−2h(0), n = 0,
0, n ≥ 1.

Proof. Let y1 be the function defined on R and given by

y1(x) =

{
xy′(x)− (2ν − 1)y(x), x 6= 0,
−2(1− 2ν)h(0), x = 0,

(30)

where y is the function given by (21).
From (20) and (30), we get x2y1(x) = 1

2y(x) + h(x), x ∈ R. Besides, the function
y1 satisfies {

(x3y1)′ − (2νx2 + 1
2 )y1 = h1(x),

y1(0) = −2(1− 2ν)h(0) = −2h1(0),
(31)

where h1(x) = xh′(x) + (1 − 2ν)h(x), x ∈ R. Notice that the function h1 satisfies
the properties Pi, i = 1, 2. So, by lemma 6, where ν is replaced by ν − 1 and h by
h1, the solution y1 of (31), is in L1(R) ∩ C0(R).
Clearly, y1(0) = lim

x→0
y1(x) = lim

x→0
xy′(x)− (2ν − 1)y(x), on account of (30).

So, −2(1− 2ν)h(0) = lim
x→0

xy′(x) + 2(2ν − 1)h(0). Hence, lim
x→0

xy′(x) = 0.

Let {hn}n≥0 be the sequence of functions defined on R and entirely given by{
h0(x) = h(x),
hn+1(x) = xh′n(x) +

[
1− 2(ν − n)

]
hn(x), n ≥ 0.

(32)

For every integer n ≥ 0, we can see that hn satisfies the properties Pi, i = 1, 2.
Let (yn)n≥0 be the sequence of functions given by yn+1(x) =

{
xy′n(x)−

(
2(ν − n)− 1

)
yn(x), x 6= 0,

−2hn+1(0), x = 0,
y0 = y, where y is given by (21).

(33)

By induction on the integer n, it is easy to show that the functions yn, n ≥ 0,
satisfying {

(x3yn)
′ −
(
2(ν − n+ 1)x2 + 1

2

)
yn = hn(x),

yn(0) = −2hn(0).
(34)

In addition, we have x2yn+1(x) = 1
2yn(x) +hn(x), x ∈ R. From (34) and by lemma

6, the functions yn, n ≥ 0, are continuous on R, and satisfying

lim
x→0

yn(x) = −2hn(0), n ≥ 0.

From (32) and (33), it comes that

−2
(
1− 2(ν − n)

)
hn(0) = −2hn+1(0) = lim

x→0
yn+1 (x)

= lim
x→0

[
xy′n(x)−

(
2(ν − n)− 1

)]
yn(x)

= lim
x→0

xy′n(x)− 2
(
1− 2(ν − n)

)
hn(0).

This implies, lim
x→0

xy′n (x) = 0, n ≥ 0. By induction on the integer k ≥ 1, let’s show

that lim
x→0

xky
(k)
n (x) = 0, for every integer n ≥ 0.

For k = 1, we have already seen that lim
x→0

xy′n(x) = 0, for every integer n ≥ 0.

Suppose that the recurrence property is valid until the order m and let’s show that
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it remains valid to the order m+ 1.
By induction hypothesis and from (33), we obtain

0 = lim
x→0

xmy
(m)
n+1(x) = lim

x→0
xm
(
xy′n(x)−

(
2(ν − n)− 1

)
yn(x)

)(m)

= lim
x→0

xm+1y(m+1)
n (x) +

(
m− 2(ν − n) + 1

)
xmy(m)

n (x)

= lim
x→0

xm+1y(m+1)
n (x).

Hence, the recurrence property holds.
Accordingly, lim

x→0
xky(k)(x) = 0, for every integer k ≥ 1, since y0 = y, where y is

given by (21).

3. Integral representations of B[ν] and B(α).

3.1. An integral representation of B[ν].
Case ν ≥ 0.
Let us show that the integral representation of the linear functional B[ν] given by
the authors in [2] remains valid for all ν ≥ 0. To do so, we need the following
fundamental lemma.

Lemma 9. Consider the following integral: S =
∫ +∞

0
G(x) sinx dx, where G :

[0,+∞[→ R is a nonnegative, continuous and decreasing function on [2π,+∞[ ,
satisfying the following condition:∫ π

0

[G(x)−G(x+ π)] sinx dx > 0. (35)

Then, S > 0.

Proof. Let Sn =
∫ π

0
[G (x+ 2nπ)−G (x+ (2n+ 1)π)] sinx dx, n ≥ 0. Clearly,∫ 2nπ

0
G (x) sinx dx =

∑n−1
k=0 Sk, n ≥ 1. Since sinx ≥ 0 on [0, π], and by as-

sumption G is decreasing on [2π,+∞[ , we get Sn ≥ 0, n ≥ 1. Therefore,∫ 2nπ

0
G (x) sinx dx ≥ S0, n ≥ 1. While n tends to +∞ and by taking (35) into

account, we obtain S ≥ S0 > 0.

Theorem 10. For any ν ≥ 0, we have Sν > 0 and then the generalized Bessel
linear functional B[ν] has the following integral representation:

〈B[ν], p〉 = S−1
ν

∫ +∞

−∞

1

x2

∫ +∞

|x|

(
|x|
t

)2ν+1

e
1

4t2
− 1

4x2 s(t2)dt p (x) dx, p ∈ P. (36)

Proof. By lemmas 2 and 9, where G = Gν , in order to show that Sν > 0, just check
the condition (35). To achieve this goal, we need to distinguish three cases.
C1. ν = 0.

For ν = 0 in (15), we get 1
4

ln(1+8x4)
x e−x ≤ G0(x) ≤ 1

2
ln(1+4x4)

x e−x, for all x > 0.
So, the inequality (35) is fulfilled if the following condition is verified,∫ π

0

ln(1 + 8x4)

x
e−x sinx dx > 2

∫ π

0

ln(1 + 4(x+ π)4)

x+ π
e−x−π sinx dx.
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A lower bound for

∫ π

0

ln(1 + 8x4)

x
e−x sin(x) dx:

We always have∫ π

0

ln(1 + 8x4)

x
e−x sinx dx =

∫ π
2

0

ln(1 + 8x4)

x
e−x sinx dx+

∫ π

π
2

ln(1 + 8x4)

x
e−x sinx dx.

Since

sinx ≥ 2

π
x, x ∈ [0,

π

2
], (37)

then
∫ π

2

0
ln(1+8x4)

x e−x sinx dx ≥ 2
π

∫ π
2

0
ln(1 + 8x4)e−xdx.

From (19) taking with x = π
2 , it follows that∫ π

2

0

ln(1 + 8x4)

x
e−x sinx dx ≥ ∆1, (38)

where ∆1 = 32
π5 Ω4(π2 ) ln(1 + π4

2 ) ' 0, 216716.

On the other hand, since ln(1 + x) ≥ ln(1+α)
α x, for all x ∈ [0, α] and α > 0, we get∫ π

π
2

ln(1 + 8x4)

x
e−x sinx dx ≥ ∆2, (39)

where ∆2 = ln(1+8π4)
π4

∫ π
π
2
x3e−x sinx dx, and after integration by parts, we obtain

∆2 =
e−

π
2 ln

(
1 + 8π4

)
2π4

{
e−

π
2

(
π3 + 3π2 + 3π

)
+
π3

8
− 3

2
π − 3

}
' 0, 07620.

From (38) and (39), we get∫ π

0

ln
(
1 + 8x4

)
x

e−x sinx dx ≥ ∆3, (40)

where ∆3 = ∆1 + ∆2 ' 0, 292916.

An upper bound for 2

∫ π

0

ln(1 + 4(x+ π)4)

x+ π
e−x−π sinx dx:

The fact that the function x 7→ ln(1 + 4x4)

x
is decreasing on [π,+∞[, yields

2

∫ π

0

ln(1 + 4(x+ π)4)

x+ π
e−x−π sinx dx ≤ ∆4, (41)

where ∆4 = 2e−π ln(1+4π4)
π

∫ π
0
e−t sin t dt and after integrations by parts, we obtain

∆4 = ln(1+4π4)
π e−π(e−π+1) ' 0, 08563. Clearly, ∆3 > ∆4 and then (35) is fulfilled.

C2. 0 < ν ≤ µ, with µ ' 0, 405589.
Using (15), the inequality (35) is fulfilled if we have∫ π

0

e−x sinx ln(1 + 8x4)

x
(
1 + ν ln(1 + 4x4)

)dx > 2

∫ π

0

e−x−π sinx ln(1 + 4(x+ π)4)

x+ π
dx. (42)

For any ν > 0, since the function x 7→ 1
1+ν ln(1+4x4) is decreasing on [0, π], then∫ π

0

e−x sinx ln(1 + 8x4)

x
(
1 + ν ln(1 + 4x4)

)dx ≥ ∫ π

0

e−x sinx ln(1 + 8x4)

x
(
1 + ν ln(1 + 4π4)

)dx.
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Clearly, the inequality (42) is satisfied if ν is positive and such that∫ π

0

e−x sinx ln(1 + 8x4)

x
(
1 + ν ln(1 + 4π4)

)dx > 2

∫ π

0

e−x−π sinx ln(1 + 4(x+ π)4)

x+ π
dx. (43)

By the fact that 2
∫ π

0
e−x−π sin x ln(1+4(x+π)4)

x+π dx > 0, the inequality (43) is equivalent
to 0 < ν < ∆5, where

∆5 =

∫ π
0
e−x sin x ln(1+8x4)

x dx− 2
∫ π

0
e−x−π sin x ln(1+4(x+π)4)

x+π dx

2 ln(1 + 4π4)
∫ π

0
e−x−π sin x ln(1+4(x+π)4)

x+π dx
.

From (40) and (41) and the fact that ∆3 −∆4 > 0, then∫ π

0

e−x sin(x) ln(1 + 8x4)

x
dx− 2

∫ π

0

e−x−π sin(x) ln(1 + 4(x+ π)4)

x+ π
dx > 0,

and ∆5 ≥ µ, where µ = ∆3−∆4

∆4 ln(1+4π4) ' 0, 405589.

Accordingly, the inequality (43) is satisfied for all ν on ]0, µ] and hence (42) is
satisfied for all ν on the interval ]0, µ] .
C3. ν > µ.
For ν ≥ 0, if we take (12) into account, we infer that (35) is fulfilled if∫ π

0

x3e−x sinx

1 + 4(ν + 1)x4
dx >

∫ π

0

(π + x)3e−x−π sinx

1 + 4ν(π + x)4
dx. (44)

A lower bound for

∫ π

0

x3e−x sinx

1 + 4(ν + 1)x4
dx:

We can write
∫ π

0
x3e−x sin x
1+4(ν+1)x4 dx =

∫ π
2

0
x3e−x sin x
1+4(ν+1)x4 dx +

∫ π
π
2

x3e−x sin x
1+4(ν+1)x4 dx. By (37),∫ π

2

0
x3e−x sin x
1+4(ν+1)x4 dx ≥ 2

π

∫ π
2

0
x4e−x

1+4(ν+1)x4 dx. From (18) with x = (π/2), we obtain∫ π
2

0

x3e−x sin(x)

1 + 4(ν + 1)x4
dx ≥ Θ1(ν), ν ≥ 0, (45)

where Θ1(ν) =
8
πΩ4(π2 )

4+(ν+1)π4 ' 1,35110
4+(ν+1)π4 .

The fact that the function x 7→ x4

1+4(ν+1)x4 is increasing on [π2 , π], leads to∫ π

π
2

x3

1 + 4(ν + 1)x4
e−x sinx dx ≥ Θ2(ν), ν ≥ 0, (46)

where Θ2(ν) =
π3

2

∫ π
π
2
e−x sin x dx

4+(ν+1)π4 =
π3

4 (1+e
π
2 )e−π

4+(ν+1)π4 ' 1.94637
4+(ν+1)π4 .

From (45) and (46),
∫ π

0
x3

1+4(ν+1)x4 e
−x sinx dx ≥ Θ3(ν), for every ν ≥ 0, where

Θ3(ν) = Θ1(ν)+Θ2(ν) = ω1

4+(ν+1)π4 , with ω1 = 8
πΩ4(π2 )+ π3

4 (1+e
π
2 )e−π ' 3, 29747.

An upper bound for

∫ π

0

(π + x)3

1 + 4ν(π + x)4
e−x−π sinx dx.

Since the function x 7→ x4

1+4(ν+1)x4 is increasing on [π, 2π], then∫ π

0

(π + x)3

1 + 4ν(π + x)4
e−x−π sinx dx =

∫ π

0

1

π + x

(π + x)4

1 + 4ν(π + x)4
e−x−π sinx dx

≤ 1

π

(2π)4

1 + 4ν(2π)4
e−π

∫ π

0

e−x sinx dx.
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So,
∫ π

0
(π+x)3e−x−π sin x

1+4ν(π+x)4 dx ≤ Θ4(ν), where Θ4(ν) =
16π3e−π

∫ π
0
e−x sin x dx

1+64π4ν = ω2

1+64π4ν

and ω2 = 8π3e−π(e−π + 1) ' 11, 18244. Thus, (44) is fulfilled if Θ3(ν) > Θ4(ν),

i.e., if ν > ω2(π4+4)−ω1

π4(64ω1−ω2) ' 0, 05808, and so, if ν > µ ' 0, 405589.

Hence, the desired result of the theorem is an immediate consequence of the three
cases already treated.

Case ν < 0.
Using (1), the linear function B[ν] where ν ∈ C, ν 6= −n, n ≥ 1, satisfies

B[ν + 1] = −4(ν + 1)x2B[ν],
−2(ν + 1)B[ν] = x(B[ν + 1])′ − (1 + 2ν)B[ν + 1].

More general, by an easy induction we can show that

(−2)
m Γ(ν +m+ 1)

Γ(ν + 1)
B[ν] =

m∑
l=0

αm,lx
lB(l)[ν +m], m ≥ 0, (47)

where (αm,l)
m
l=0, m ≥ 0, are given by

αm,m = 1, m ≥ 0,
αm,l−1 +

(
l − 1− 2(ν +m)

)
αm,l = αm+1,l, 1 ≤ l ≤ m, m ≥ 1,

αm+1,0 = −
(
1 + 2(ν +m)

)
αm,0, m ≥ 0.

(48)

Theorem 11. Let ν < 0, with ν 6= −n, n ≥ 1. For each integer m ≥ 1, such that
ν > −m, the generalized Bessel linear functional B[ν] has the following integral
representation:

〈B[ν], p〉 =

∫ +∞

−∞
Vν+m(x)p(x)dx, p ∈ P, and where (49)

Vν+m(x) =
Γ(ν + 1)

(−2)mSν+mΓ(ν +m+ 1)

m∑
l=0

αm,lx
lU

(l)
ν+m(x). (50)

The sequence (αm,l)
m
l=0 is given by (48), and

Uν+m(x) =


0, x = 0,

1

x2

∫ +∞

|x|

(
|x|
t

)2(ν+m)+1

e
1

4t2
− 1

4x2 s(t2)dt, x 6= 0.
(51)

Proof. Let ν < 0, with ν 6= −n, n ≥ 1. Now, let m ≥ 1 be an integer such that
ν > −m. From (4), the function Uν+m satisfies

(x3y)′ −
(
2(ν +m+ 1)x2 +

1

2

)
y = g(x), y(0) = 0,

where g(x) = − |x| s(x2) = − |x| e−
√
|x| sin(

√
|x|) for all x ∈ R. Clearly, g(x) =

f(
√
|x|), where f is an entire function, f(t) = −t2e−t sin t =

∑+∞
n=0 ant

n with a0 =

a1 = 0 and an = − 2
n−2
2

(n−2)! cos( 3nπ
4 ), n ≥ 2. Besides, f satisfies P2. In concordance

of (20), Uν+m is a solution of the first-order differential equation Eν+m(g). In view
of lemmas 6 and 8 and by using theorem 10, Uν+m is even, infinitely differentiable
on R− {0}, in L1(R) ∩ C0(R) and when | x |→ +∞, we have∣∣∣xnU (n)

ν+m(x)
∣∣∣ = O

(
1

|x|k+2

)
, for every integers k ≥ kν and n ≥ 0. (52)
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Moreover, for every integer n ≥ 0, we have lim
x→0

xnU
(n)
ν+m(x) = 0. Since Sν+m > 0,

then B[ν +m] has the following integral representation:

〈B[ν +m], p〉 = S−1
ν+m

∫ +∞

−∞
Uν+m(x)p(x)dx, p ∈ P, (53)

where

Uν+m(x) =


0, x = 0,

1

x2

∫ +∞

|x|

(
|x|
t

)2(ν+m)+1

e
1

4t2
− 1

4x2 s(t2)dt, x 6= 0,

By (47), (52) and (53), we get after finite number of integrations by parts,

(−2)m
Γ(ν +m+ 1)

Γ(ν + 1)
〈B[ν], p〉 =

m∑
l=0

(−1)lam,l〈B[ν +m], (xlp)(l)〉

= S−1
ν+m

m∑
l=0

(−1)lam,l

∫ +∞

−∞
Uν+m(t)(tlp)(l)(t)dt

= S−1
ν+m

∫ +∞

−∞

m∑
l=0

am,lt
lU

(l)
ν+m (t) p (t) dt.

This archived the proof of the theorem.

3.2. An integral representation of B(α). Recall that the Bessel linear functional
B(α), where α is a complex number such that α 6= −(n/2), n ≥ 0, is D-classical
satisfying [7] : (

x2B(α)
)′ − 2(αx+ 1)B(α) = 0.

By referring to [2], there is a connection formula between the two linear functionals
B[ν] and B(α),

σB[ν] = h 1
8
B(
ν + 1

2
), for all ν 6= −n, n ≥ 1.

Equivalently,

B(α) = h8σB[2α− 1], for all α 6= −(n/2), n ≥ 0. (54)

As a straightforward consequence of (54) and by theorems 10 and 11, we obtain an
integral representation of B(α), for all α ∈ R such that α 6= −(n/2), n ≥ 0.
For α ≥ (1/2), we have

〈B(α), p〉 =

∫ +∞

0

U2α−1(
√

t
8 )

S2α−1

√
8t

p(t) dt, p ∈ P, (55)

where S2α−1 > 0 and the function U2α−1 is given by (2).
For α < 1

2 and α 6= −(n/2), n ≥ 0, we have for each integer m ≥ 1 such that

α > −m+1
2 ,

〈B(α), p〉 =

∫ +∞

0

V2α−1+m(
√

t
8 )

√
8t

p(t)dt, p ∈ P, (56)

where the function V2α−1+m is given by (50).
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