INTEGRAL REPRESENTATION OF THE GENERALIZED BESSEL LINEAR FUNCTIONAL.

KARIMA ALI KHELIL, RIDHA SFAXI, AMMAR BOUKHEMIS

Abstract

In this paper, we are interested in the integral representation problem of the generalized Bessel linear functional $B[\nu]$, well-known by the Pearson equation that it satisfies: $\left(x^{3} B[\nu]\right)^{\prime}-\left(2(\nu+1) x^{2}+\frac{1}{2}\right) B[\nu]=0$. By means of some integral estimation and technical results including important inequalities of the incomplete gamma function and the exponential integral, we obtain an integral representation of $B[\nu]$, for every real number $\nu \neq-n, n \geq 0$. The connection formula between $B[\nu]$ and the classical Bessel linear functional $B(\alpha)$ allows us to obtain an integral representation of $B(\alpha)$, for all real number $\alpha \neq-(n / 2), n \geq 0$.

1. Introduction

Let \mathcal{P} be the linear space of polynomials in one variable with complex coefficients and let \mathcal{P}^{\prime} be its algebraic dual. We denote by $\langle\mathcal{U}, f\rangle$ the action of \mathcal{U} in \mathcal{P}^{\prime} on f in \mathcal{P} and by $(\mathcal{U})_{n}:=\left\langle\mathcal{U}, x^{n}\right\rangle, n \geq 0$, the moments of \mathcal{U} with respect to the monomial sequence $\left\{x^{n}\right\}_{n \geq 0}$. When $(\mathcal{U})_{0}=1$, the linear functional \mathcal{U} is said to be normalized. Let us define some operations in \mathcal{P}^{\prime}, (see $[1,6,9]$). For any \mathcal{U} in \mathcal{P}^{\prime}, any q in \mathcal{P} and any complex numbers a, b, c with $a \neq 0$, let $D \mathcal{U}=\mathcal{U}^{\prime}, q \mathcal{U}, h_{a} \mathcal{U}, \tau_{b} \mathcal{U}$ and $\sigma \mathcal{U}$ be respectively the derivative, the left multiplication, the translation, the homothetic and the pair part of the linear functionals defined by duality:

$$
\begin{aligned}
& \left\langle\mathcal{U}^{\prime}, f\right\rangle:=-\left\langle\mathcal{U}, f^{\prime}\right\rangle, \\
& \langle q \mathcal{U}, f\rangle:=\langle\mathcal{U}, q f\rangle, \\
& \left\langle h_{a} \mathcal{U}, f\right\rangle:=\left\langle\mathcal{U}, h_{a} f\right\rangle=\langle\mathcal{U}, f(a x)\rangle, \\
& \left\langle\tau_{b} \mathcal{U}, f\right\rangle:=\left\langle\mathcal{U}, \tau_{-b} f\right\rangle=\langle\mathcal{U}, f(x+b)\rangle, \\
& \langle\sigma \mathcal{U}, f\rangle:=\langle\mathcal{U}, \sigma f\rangle=\left\langle\mathcal{U}, f\left(x^{2}\right)\right\rangle, f \in \mathcal{P} .
\end{aligned}
$$

Consider the symmetric generalized Bessel linear functional $B[\nu]$ given by its moments [2]:

$$
\begin{align*}
& (B[\nu])_{2 n}=\frac{(-1)^{n} \Gamma(\nu+1)}{2^{2 n} \Gamma(n+\nu+1)}, n \geq 0 \tag{1}\\
& (B[\nu])_{2 n+1}=0, n \geq 0
\end{align*}
$$

[^0]where $\nu \neq-(n+1), n \geq 0$ and here Γ is the gamma function.
The linear functional $B[\nu]$ is symmetric, i.e., $(B[\nu])_{2 n+1}=0, n \geq 0$, and semiclassical (see $[4,6]$) of class one satisfying the Pearson equation [2]:
$$
\left(x^{3} B[\nu]\right)^{\prime}-\left(2(\nu+1) x^{2}+\frac{1}{2}\right) B[\nu]=0
$$

By referring to [2], the linear functional $B[\nu]$ for $\nu \geq(1 / 2)$, has the following integral representation:

$$
\langle B[\nu], p(x)\rangle=S_{\nu}^{-1} \int_{-\infty}^{+\infty} U_{\nu}(x) p(x) d x, p \in \mathcal{P}
$$

with $S_{\nu}=\int_{-\infty}^{+\infty} U_{\nu}(x) d x$ and where the function U_{ν} is in $L^{1}(\mathbb{R})$ and has the following expression:

$$
U_{\nu}(x)= \begin{cases}0, & x=0 \tag{2}\\ \frac{1}{x^{2}} \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \nu+1} e^{\frac{1}{4 t^{2}}-\frac{1}{4 x^{2}}} s\left(t^{2}\right) d t, & x \neq 0\end{cases}
$$

where s is the Stieltjes function given by $s(x)= \begin{cases}0, & x \leq 0, \\ e^{-x^{\frac{1}{4}}} \sin x^{\frac{1}{4}}, & x>0 .\end{cases}$
By Fubini's theorem, S_{ν} can be written as follows:

$$
\begin{equation*}
S_{\nu}=4 \int_{0}^{+\infty} G_{\nu}(t) \sin t d t \tag{3}
\end{equation*}
$$

with $G_{\nu}(t)=f_{\nu}(t) e^{-t}, f_{\nu}(t)=t^{-4 \nu-1} e^{\frac{1}{4 t^{4}}} \varphi_{\nu-\frac{3}{2}}\left(t^{2}\right), \varphi_{\nu}(t)=\int_{0}^{t} x^{2 \nu+2} e^{-\frac{1}{4 x^{2}}} d x$.
Notice that $y=U_{\nu}(x)$ is the solution of the first-order linear differential equation:

$$
\left\{\begin{array}{l}
\left(x^{3} y\right)^{\prime}-\left(2(\nu+1) x^{2}+\frac{1}{2}\right) y=g(x), \tag{4}\\
y(0)=0,
\end{array}\right.
$$

where the function $g(x)=-|x| s\left(x^{2}\right)$ represents the null linear functional.
The main purpose of this paper is to give an integral representation of $B[\nu]$, for all real number $\nu \neq-n, n \geq 0$. To reach our goal, we need to treat two cases separately, the first one is $\nu \geq 0$ and the second is $\nu<0$. In the first case, our approach is based essentially on the use of the fundamental Lemma 9 . The connection formulas that we highlight between the function φ_{ν} and the incomplete gamma function (resp. the exponential integral), as well as some double-inequalities established thereafter, will be important in the success of this approach. In the second cases, we use another approach based on a new connection formula between the linear functional $B[\nu]$ and $B[\nu+1]$. Finally, thanks to the connection formula between $B[\nu]$ and the classical Bessel linear functional $\mathcal{B}(\alpha)$, (see $[2,6,9]$), we obtain an integral representation of $\mathcal{B}(\alpha)$, for all real number $\alpha \neq-(n / 2), n \geq 0$.

The rest of this paper is organized as follows. In section 2, we develop some basic results and technical lemmas for future use. Section 3 is devoted to the integral representation problem of the generalized as well as the classical Bessel linear functional.

2. Preliminaries Results.

2.1. Some properties of the functions φ_{ν}, f_{ν} and G_{ν}. For each real number ν, recall that the function φ_{ν} is given by

$$
\varphi_{\nu}(x)=\int_{0}^{x} t^{2 \nu+2} e^{-\frac{1}{4 t^{2}}} d t, x \geq 0
$$

Upon the change of variable $y=\frac{1}{4 t^{2}}$, we get

$$
\begin{equation*}
\varphi_{\nu}(x)=\frac{1}{2^{2 \nu+4}} \Gamma\left(-\nu-\frac{3}{2}, \frac{1}{4 x^{2}}\right), x>0 \tag{5}
\end{equation*}
$$

where for every $x>0$ and $a \in \mathbb{R}, \Gamma(a, x)=\int_{x}^{+\infty} t^{a-1} e^{-t} d t$, is the incomplete gamma function, known by the following useful properties (see [3, 9]),

$$
\begin{align*}
& \Gamma(a, x)=(a-1) \Gamma(a-1, x)+x^{a-1} e^{-x}, \quad \Gamma(1, x)=e^{-x} \tag{6}\\
& \frac{x^{a}}{x+1-a} e^{-x} \leq \Gamma(a, x) \leq \frac{(1+x) x^{a-1}}{x+2-a} e^{-x}, \quad a \leq 1 \tag{7}\\
& \frac{1}{2} e^{-x} \ln \left(1+\frac{2}{x}\right) \leq E_{1}(x) \leq e^{-x} \ln \left(1+\frac{1}{x}\right) \tag{8}
\end{align*}
$$

and $E_{1}(x)=\Gamma(0, x)$ is the exponential integral.
By substituting of (6) into (7) and then replacing a by $a+1$, we obtain

$$
\begin{equation*}
\frac{x^{a}}{x+1-a} e^{-x} \leq \Gamma(a, x) \leq \frac{x^{a}}{x-a} e^{-x}, \quad a \leq 0 \tag{9}
\end{equation*}
$$

Lemma 1. For every $\nu \geq-(3 / 2)$, we have

$$
\begin{equation*}
\frac{2 x^{2 \nu+5}}{1+2(2 \nu+5) x^{2}} e^{-\frac{1}{4 x^{2}}} \leq \varphi_{\nu}(x) \leq \frac{2 x^{2 \nu+5}}{1+2(2 \nu+3) x^{2}} e^{-\frac{1}{4 x^{2}}}, x>0 \tag{10}
\end{equation*}
$$

Proof. Immediate from (5) and (9).
Using (3) and (10), the following double-inequalities hold,

$$
\begin{align*}
\frac{2 x^{3}}{1+4(\nu+1) x^{4}} & \leq f_{\nu}(x) \tag{11}
\end{align*} \leq \frac{2 x^{3}}{1+4 \nu x^{4}}, ~ 子 \frac{2 x^{3}}{1+4(\nu+1) x^{4}} e^{-x} \leq G_{\nu}(x) \leq \frac{2 x^{3}}{1+4 \nu x^{4}} e^{-x}, \text { for all } x \geq 0 \text { and } \nu \geq 0 . ~ \$
$$

In view of $\sqrt[12]{12}$, it is clear that $G_{\nu}(0)=0, G_{\nu}(x)>0$ for all $x>0$, and $\lim _{x \rightarrow+\infty} G_{\nu}(x)=$ 0 , for every $\nu \geq 0$. Thus, G_{ν} has a maximum for $x=\bar{x}$ satisfying $G_{\nu}^{\prime}(\bar{x})=0$, i.e., $f_{\nu}^{\prime}(\bar{x})=f_{\nu}(\bar{x})$.
Lemma 2. For every $\nu \geq 0$, the function G_{ν} is decreasing on $[2 \pi,+\infty[$.
Proof. Let $t>0$, be an extremum of the function G_{ν}. Then, $G_{\nu}^{\prime}(t)=0$. Equivalently, $f_{\nu}^{\prime}(t)=f_{\nu}(t)$. By 11, we get $f_{\nu}(t)=\frac{2 t^{3}}{1+(4 \nu+1) t^{4}+t^{5}} \geq \frac{2 t^{3}}{1+4(\nu+1) t^{4}}$. An easy computation leads to $t \leq 3<2 \pi$. This finishes the proof of the lemma.

The following double-inequality will be useful for the sequel.

Lemma 3. For every $\nu \geq-(3 / 2)$, the following double-inequality holds,

$$
\begin{equation*}
\frac{x^{2 \nu+3} e^{\frac{-1}{4 x^{2}}} \ln \left(1+8 x^{2}\right)}{2\left(2+(2 \nu+3) \ln \left(1+4 x^{2}\right)\right)} \leq \varphi_{\nu}(x) \leq \frac{1}{2} x^{2 \nu+3} e^{\frac{-1}{4 x^{2}}} \ln \left(1+4 x^{2}\right), x>0 \tag{13}
\end{equation*}
$$

Proof. Let $\nu \geq-(3 / 2)$. We can write $\varphi_{\nu}(x)=\frac{1}{2} \int_{0}^{x} t^{2 \nu+3} \frac{d}{d t}\left(E_{1}\left(\frac{1}{4 t^{2}}\right)\right) d t$. Upon integration by parts, we get

$$
\varphi_{\nu}(x)=\frac{1}{2} x^{2 \nu+3} E_{1}\left(\frac{1}{4 x^{2}}\right)-\frac{1}{2}(2 \nu+3) \int_{0}^{x} t^{2 \nu+2} E_{1}\left(\frac{1}{4 t^{2}}\right) d t, x>0
$$

Using (8), (3) and the fact that the function $x \mapsto \ln (1+x)$ is increasing on the interval $]-1,+\infty[$, it follows that

$$
\varphi_{\nu}(x) \geq \frac{1}{4} x^{2 \nu+3} e^{-\frac{1}{4 x^{2}}} \ln \left(1+8 x^{2}\right)-\frac{1}{2}(2 \nu+3) \ln \left(1+4 x^{2}\right) \varphi_{\nu}(x), x>0
$$

This implies, $\varphi_{\nu}(x) \geq \frac{1}{2} \frac{\left.x^{2 \nu+3} e^{-\frac{1}{4 x}}\right) \ln \left(1+8 x^{2}\right)}{2+(2 \nu+3) \ln \left(1+4 x^{2}\right)}, x>0$.
For the same reason, we find the right-hand inequality of $\sqrt{13}$, as follows:

$$
\varphi_{\nu}(x) \leq \frac{1}{2} x^{2 \nu+3} E_{1}\left(\frac{1}{4 x^{2}}\right) \leq \frac{1}{2} x^{2 \nu+3} e^{-\frac{1}{4 x^{2}}} \ln \left(1+4 x^{2}\right), \quad x>0
$$

The proof of lemma 3 is complete.
According to lemma 3 and by (5), we can establish the following new doubleinequality for the incomplete gamma function:

$$
\frac{1}{2} x^{a} e^{-x} \frac{\ln \left(1+\frac{2}{x}\right)}{1-a \ln \left(1+\frac{1}{x}\right)} \leq \Gamma(a, x) \leq x^{a} e^{-x} \ln \left(1+\frac{1}{x}\right), x>0, a \leq 0
$$

Again by lemma 3 and by (3), the following double-inequalities is achieved,

$$
\begin{align*}
\frac{1}{4} \frac{\ln \left(1+8 x^{4}\right)}{x\left[1+\nu \ln \left(1+4 x^{4}\right)\right]} & \leq f_{\nu}(x) \tag{14}
\end{align*} \leq \frac{1}{2} \frac{\ln \left(1+4 x^{4}\right)}{x}, ~ 子 ~ \frac{1}{4} \frac{\ln \left(1+8 x^{4}\right)}{x\left[1+\nu \ln \left(1+4 x^{4}\right)\right]} e^{-x} \leq G_{\nu}(x) \leq \frac{1}{2} \frac{\ln \left(1+4 x^{4}\right)}{x} e^{-x}, x>0, \nu \geq 0 .
$$

2.2. Some technical results on integral estimation.

Proposition 4. Let $g:[0,+\infty[\rightarrow[0,+\infty[$ be a decreasing function, continuous on $[0,+\infty[$ and differentiable on $] 0,+\infty[$. Then, for every $\rho \geq 0$, we have

$$
\begin{equation*}
\int_{0}^{x} t^{\rho} g(t) e^{-t} d t \geq \Omega_{\rho}(x) g(x), x \geq 0 \tag{16}
\end{equation*}
$$

where $\Omega_{\rho}(x)=\Gamma(\rho+1) e^{-x} \sum_{n \geq 0} \frac{x^{n+\rho+1}}{\Gamma(n+2+\rho)}$.
In particular, $\Omega_{p}(x)=p!\left[1-e^{-x} \sum_{k=0}^{p} \frac{x^{k}}{k!}\right]$, for all integer $p \geq 0$.
Proof. When $\rho=0$, the assumption g is decreasing on $[0,+\infty[$ implies,

$$
\int_{0}^{x} g(t) e^{-t} d t \geq g(x) \int_{0}^{x} e^{-t} d t=g(x) \Omega_{0}(x), \quad x>0
$$

where $\Omega_{0}(x)=1-e^{-x}=e^{-x} \sum_{n \geq 0} \frac{x^{n+1}}{(n+1)!}$.
Hence, (16) is valid for $\rho=0$.

If $\rho>0$, setting $R_{\rho}(t)=t^{\rho} g(t), t>0$ and $R_{\rho}(0)=0$. By assumption g is decreasing on $\left[0,+\infty[\right.$ and differentiable on $] 0,+\infty\left[\right.$, we can write $t R_{\rho}^{\prime}(t)-\rho R_{\rho}(t)=$ $t^{\rho+1} g^{\prime}(t) \leq 0, t>0$. This yields,

$$
\begin{equation*}
\rho t^{n} R_{\rho}(t) e^{-t} \geq t^{n+1} R_{\rho}^{\prime}(t) e^{-t}, \quad t>0 \tag{17}
\end{equation*}
$$

For every $x>0$, let $\left\{J_{n}(x)\right\}_{n \geq 0}$ be the sequence of nonnegative real numbers,

$$
J_{n}(x):=\frac{1}{\Gamma(n+1+\rho)} \int_{0}^{x} t^{n} R_{\rho}(t) e^{-t} d t, n \geq 0
$$

Using 17 , it is easy to see that $\Gamma(n+1+\rho) J_{n}(x) \geq \frac{1}{\rho} \int_{0}^{x} t^{n+1} e^{-t} R_{\rho}^{\prime}(t) d t, n \geq 0$. Upon integration by parts, we obtain

$$
\Gamma(n+1+\rho) J_{n}(x) \geq \frac{1}{\rho}\left[x^{n+1} e^{-x} R_{\rho}(x)-\int_{0}^{x} t^{n} e^{-t}(n+1-t) R_{\rho}(t) d t\right], n \geq 0
$$

Equivalently, we have $J_{n}(x)-J_{n+1}(x) \geq \frac{x^{n+1}}{\Gamma(n+2+\rho)} e^{-x} R_{\rho}(x), n \geq 0$. This implies, $J_{0}(x) \geq J_{n}(x)+e^{-x} R_{\rho}(x) \sum_{l=0}^{n-1} \frac{x^{l+1}}{\Gamma(l+2+\rho)}, n \geq 1$. Since $J_{n}(x) \geq 0$ for all $n \geq 0$ and $x>0$, we get $J_{0}(x) \geq e^{-x} R_{\rho}(x) \sum_{l=0}^{n-1} \frac{x^{l+1}}{\Gamma(l+2+\rho)}, n \geq 1$. If n tends to $+\infty$, then $\int_{0}^{x} t^{\rho} g(t) e^{-t} d t \geq \Omega_{\rho}(x) g(x)$, where $\Omega_{\rho}(x)=\Gamma(\rho+1) e^{-x} \sum_{n \geq 0} \frac{x^{n+\rho+1}}{\Gamma(n+2+\rho)}$.
Hence, the inequality 16 is valid for all $\rho \geq 0$ and all $x>0$.
If $\rho=p$: an nonnegative integer, we have

$$
\Omega_{p}(x)=p!e^{-x} \sum_{n \geq 0} \frac{x^{n+p+1}}{(n+1+p)!}=p!\left(1-e^{-x} \sum_{k=0}^{p} \frac{x^{k}}{k!}\right), x>0
$$

This finishes the proof of the proposition.
Furthermore, the following inequalities are needed for what comes next.
Proposition 5. For every $x>0$, we have

$$
\begin{align*}
& \int_{0}^{x} \frac{t^{4} e^{-t}}{1+4(\nu+1) t^{4}} d t \geq \Omega_{4}(x) \frac{1}{1+4(\nu+1) x^{4}}, \quad \nu \geq-1 \tag{18}\\
& \int_{0}^{x} e^{-t} \ln \left(1+8 t^{4}\right) d t \geq \Omega_{4}(x) \frac{\ln \left(1+8 x^{4}\right)}{x^{4}} \tag{19}
\end{align*}
$$

where $\Omega_{4}(x)=24\left(1-e^{-x} \sum_{k=0}^{4} \frac{x^{k}}{k!}\right)$.
Proof. To establish (18), we use proposition 4, with $\rho=p=4$ and $g(t)=$ $\frac{1}{1+4(\nu+1) t^{4}}$, for $t \geq 0$. Clearly, $g^{\prime}(t)=\frac{-16(\nu+1) t^{3}}{\left(1+4(\nu+1) t^{4}\right)^{2}} \leq 0$, for $t \geq 0$ and $\nu \geq-1$.

To establish (19), we use proposition 4, with $\rho=p=4$ and $g(t)=8 h\left(8 t^{4}\right)$, for all $t \geq 0$, where $h(t)=\frac{\ln (1+t)}{t}$, for all $t>0$ and $h(0)=1$. We can show that, $g^{\prime}(t)=256 t^{3} h^{\prime}\left(8 t^{4}\right) \leq 0, t>0$. Indeed, it suffices to show that $h^{\prime}(t) \leq 0$, for all $t \geq 0$. Clearly, $h^{\prime}(t)=\frac{l(t)}{t^{2}}$, for all $t>0$, where $l(t)=\frac{t}{t+1}-\ln (t+1)$, for all $t \geq 0$. Since $l^{\prime}(t)=-\frac{t}{(t+1)^{2}} \leq 0$, for all $t \geq 0$, then $l(t) \leq l(0)=0$, for all $t \geq 0$. Hence, $h^{\prime}(t) \leq 0$, for all $t \geq 0$ and then $g^{\prime}(t) \leq 0$, for all $t \geq 0$.
2.3. Some asymptotic behavior results. Let h be a function defined on \mathbb{R}, and having the following properties:
$\mathbf{P}_{1} . h(x)=f(\sqrt{|x|})$, for every x in \mathbb{R}, where $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ is an entire function.
\mathbf{P}_{2}. The function h and all its derivatives, are with rapid decay at $\pm \infty$, i.e., for every integers $k \geq 0$ and $n \geq 0$,

$$
\sup _{x \in \mathbb{R}}\left|x^{k} h^{(n)}(x)\right|<+\infty
$$

Now, for any complex number ν and any function h satisfying the properties \mathbf{P}_{i}, $i=1,2$, let us consider the following first-order linear differential equation:

$$
E_{\nu}(h):\left\{\begin{array}{l}
\left(x^{3} y\right)^{\prime}-\left[2(\nu+1) x^{2}+\frac{1}{2}\right] y=h(x) \tag{20}\\
y(0)=-2 h(0)
\end{array}\right.
$$

The solution of 20 is defined on the real line \mathbb{R} and given by

$$
y(x)=\left\{\begin{array}{l}
-|x|^{2 \nu-1} e^{\frac{-1}{4 x^{2}}} \int_{|x|}^{+\infty} t^{-2(\nu+1)} e^{\frac{1}{4 t^{2}}} h(t) d t, \quad x \neq 0 \tag{21}\\
-2 h(0), x=0
\end{array}\right.
$$

Lemma 6. The function y given by (21) is even, infinitely differentiable on $\mathbb{R}-\{0\}$ and fulfills the following properties:
(i) When $|x| \rightarrow+\infty$, we have $\left|x^{n} y^{(n)}(x)\right|=\mathrm{O}\left(\frac{1}{|x|^{k+2}}\right)$, for each positive integer k such that $k>k_{\nu}=\max \{0,-2 \Re(\nu)-1\}$, and each integer $n \geq 0$.
(ii) The function $y \in L^{1}(\mathbb{R}) \cap C^{0}(\mathbb{R})$.

Proof. By assumption \mathbf{P}_{2}, for every integers $k \geq 0$ and $n \geq 0$, there exist $M_{k, n}>0$ and $\eta_{k, n}>0$, such that

$$
\begin{equation*}
\left|h^{(n)}(x)\right| \leq \frac{M_{k, n}}{|x|^{k}}, \quad|x|>\eta_{k, n} \tag{22}
\end{equation*}
$$

i.e., for every integers $k \geq 0$ and $n \geq 0,\left|h^{(n)}(x)\right|=\mathrm{O}\left(\frac{1}{|x|^{k}}\right),|x| \rightarrow+\infty$.

By 21, 22, with $n=0$, and since $e^{\frac{1}{4 t^{2}}} \leq e^{\frac{1}{4 x^{2}}}$, for all $t \geq|x|$, we obtain

$$
|y(x)| \leq|x|^{2 \Re(\nu)-1} e^{\frac{-1}{4 x^{2}}} \int_{|x|}^{+\infty} t^{-2(\Re(\nu)+1)} e^{\frac{1}{4 t^{2}}}|h(t)| d t \leq \frac{M_{k, 0}}{(k+2 \Re(\nu)+1)} \frac{1}{|x|^{k+2}}
$$

for all $x \in \mathbb{R}$ such that $|x|>\eta_{k, 0}$ and all integer $k>k_{\nu}=\max \{0,-2 \Re(\nu)-1\}$. So, for every integer $k>k_{\nu}$,

$$
\begin{equation*}
|y(x)|=\mathrm{O}\left(\frac{1}{|x|^{k+2}}\right),|x| \rightarrow+\infty \tag{23}
\end{equation*}
$$

By 20 , it is clear that $\left|x^{k+3} y^{\prime}\right| \leq\left((2|\nu|+1) x^{2}+\frac{1}{2}\right)\left|x^{k} y(x)\right|+\left|x^{k} h(x)\right|$, and on account of 22 and 23 , it follows that for every integer $k>k_{\nu}$,

$$
\begin{equation*}
\left|x y^{\prime}(x)\right|=\mathrm{O}\left(\frac{1}{|x|^{k+2}}\right),|x| \rightarrow+\infty \tag{24}
\end{equation*}
$$

By induction on the integer $n \geq 0$, let's show that for every integer $k>k_{\nu}$, when $|x| \rightarrow+\infty$, we have

$$
\left|x^{n} y^{(n)}(x)\right|=\mathrm{O}\left(\frac{1}{|x|^{k+2}}\right),|x| \rightarrow+\infty
$$

For $n=0$, and $n=1$, the recurrence property is true by 23 and 24 respectively. Suppose that the recurrence property is valid up to the order $m(m \geq 1)$, and let's show that it remains valid to the order $m+1$.
By (20), after differentiating m-times and by using the Leibnitz's formula,

$$
\begin{aligned}
x^{3} y^{(m+1)}(x)= & \left((2 \nu-3 m-1) x^{2}+\frac{1}{2}\right) y^{(m)}(x)+m(4 \nu-3 m+1) x y^{(m-1)}(x)+ \\
& m(m-1)(2 \nu-m+1) y^{(m-2)}(x)+h^{(m)}(x)
\end{aligned}
$$

then

$$
\begin{align*}
& \left|x^{3+k+m} y^{(m+1)}(x)\right| \leq(2|\nu|+3 m+1) x^{2}+\frac{1}{2}\left|x^{k+m} y^{(m)}(x)\right| \tag{25}\\
& \quad+m(4|\nu|+3 m+1)\left|x^{1+k+m} y^{(m-1)}(x)\right| \\
& \quad+m(m-1)(2|\nu|+m+1)\left|x^{k+m} y^{(m-2)}(x)\right|+\left|x^{k+m} h^{(m)}(x)\right|
\end{align*}
$$

By induction hypothesis and $\sqrt[22]{ }$, each one of the quantities $\left|x^{2+k+m} y^{(m)}(x)\right|$, $\left|x^{1+k+m} y^{(m-1)}(x)\right|,\left|x^{k+m} y^{(m-2)}(x)\right|$ and $\left|x^{k+m} h^{(m)}(x)\right|$, is equal to $\mathrm{O}(1)$. So, by 25p, $\left|x^{m+1} y^{(m+1)}(x)\right|=\mathrm{O}\left(\frac{1}{|x|^{k+2}}\right),|x| \rightarrow+\infty$, for every integer $k>k_{\nu}$. Hence, (i) holds.

When $|x|<1$, we start by noting that

$$
\begin{equation*}
y(x)=w(|x|)-|x|^{2 \nu-1} e^{\frac{-1}{4 x^{2}}} \int_{1}^{+\infty} t^{-2(\nu+1)} e^{\frac{1}{4 t^{2}}} h(t) d t \tag{26}
\end{equation*}
$$

where $w(x)=\left\{\begin{array}{l}-x^{2 \nu-1} e^{\frac{-1}{4 x^{2}}} \int_{x}^{1} t^{-2(\nu+1)} e^{\frac{1}{4 t^{2}}} h(t) d t, x>0, \\ -2 h(0), x=0 .\end{array}\right.$
Clearly, $y(x)=w(|x|)+\mathrm{o}\left(e^{\frac{-1}{8 x^{2}}}\right)$. By applying the Hospital's rule to the ratio,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} w(x) & =\lim _{x \rightarrow 0^{+}} \frac{-\int_{x}^{1} t^{-2(\nu+1)} e^{\frac{1}{4 t^{2}}} h(t) d t}{x^{-2 \nu+1} e^{\frac{1}{4 x^{2}}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{h(x)}{(-2 \nu+1) x^{2}-\frac{1}{2}}=-2 h(0)=w(0) .
\end{aligned}
$$

So, $\lim _{x \rightarrow 0^{+}} w(x)=-2 h(0)$. Hence, $\lim _{x \rightarrow 0} y(x)=-2 h(0)$. Thus, y is continuous on \mathbb{R}.
Accordingly, the function y given by 21, is in $L^{1}(\mathbb{R}) \cap C^{0}(\mathbb{R})$.
Hence, (ii) holds.
Lemma 7. For x small enough the function y given by (21) has the following expansion:

$$
y(x)=\sum_{l=0}^{N} \alpha_{l}|x|^{\frac{l}{2}}+\mathrm{o}\left(|x|^{\frac{N}{2}}\right), \text { for every integer } N \geq 4
$$

where the $\alpha_{l}^{\prime} s$ are the coefficients of the series representation of f appearing in property \boldsymbol{P}_{1} and given by

$$
\left\{\begin{array}{l}
a_{l}-\left(\frac{l}{2}-1-2 \nu\right) \alpha_{l-4}+\frac{1}{2} \alpha_{l}=0,0 \leq l \leq N \\
\alpha_{-l}=0, l \geq 1, \quad \text { and } \quad \alpha_{l}=0, l \geq N+1
\end{array}\right.
$$

Proof. Recall that the function w given by (26) is continuous on $[0,+\infty[$ and infinitely differentiable on $] 0,+\infty[$. It is easy to show that w satisfies

$$
\left\{\begin{array}{l}
\left(x^{3} w\right)^{\prime}-\left[2(\nu+1) x^{2}+\frac{1}{2}\right] w=h(x) \tag{27}\\
w(0)=-2 h(0), \quad w(1)=0
\end{array}\right.
$$

where the function h satisfies the properties $\mathbf{P}_{i}, i=1,2$.
For any integer $N \geq 4$, let $\left(\alpha_{l}\right)_{l \geq 0}$ be the sequence of complex numbers given by

$$
\left\{\begin{array}{l}
a_{l}-\left(\frac{l}{2}-1-2 \nu\right) \alpha_{l-4}+\frac{1}{2} \alpha_{l}=0,0 \leq l \leq N \tag{28}\\
\alpha_{-l}=0, l \geq 1, \quad \alpha_{l}=0, l \geq N+1
\end{array}\right.
$$

and C_{N} be the function defined on $[0,+\infty[$ by

$$
C_{N}(x)= \begin{cases}\left(w(x)-\sum_{l=0}^{N} a_{l} x^{\frac{l}{2}}\right) x^{-\frac{N+1}{2}}, & x>0 \tag{29}\\ -2\left[a_{N+1}+\left(2 \nu_{N}+1\right) \alpha_{N-3}\right], & x=0\end{cases}
$$

where $\nu_{N}=\nu-\frac{N+1}{4}$.
Substituting 29 into 27 and taking 28 into account, the function v defined on $\left[0,+\infty\left[\right.\right.$ by $v(x)=C_{N}(x)$, satisfies

$$
\left\{\begin{array}{l}
\left(x^{3} v\right)^{\prime}-\left[2\left(\nu_{N}+1\right) x^{2}+\frac{1}{2}\right] v=f_{N}(\sqrt{x}), \\
v(0)=-2\left[a_{N+1}+\left(2 \nu_{N}+1\right) \alpha_{N-3}\right], \quad v(1)=-\sum_{l=0}^{N} \alpha_{l}
\end{array}\right.
$$

where the function f_{N} is defined on the interval $[0,+\infty[$ by

$$
f_{N}(t)= \begin{cases}\sum_{l=0}^{\infty}\left[a_{l+N+1}+\left(-\frac{l}{2}+2 \nu_{N}+1\right) \alpha_{l+N-3}\right] t^{l}, & t>0 \\ a_{N+1}+\alpha_{N-3}\left(2 \nu_{N}+1\right), & t=0\end{cases}
$$

The resolution of the last first-order differential equation gives us

$$
v(x)=C_{N}(x)=\left[-e^{\frac{1}{4}} \sum_{l=0}^{N} \alpha_{l}-\int_{x}^{1} t^{-2\left(\nu_{N}+1\right)} f_{N}(\sqrt{t}) e^{\frac{1}{4 t^{2}}} d t\right] x^{2 \nu_{N}-1} e^{\frac{-1}{4 x^{2}}}, \quad x>0
$$

If we apply the Hospital's rule to the ratio, we get

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} C_{N}(x) & =\lim _{x \rightarrow 0^{+}} \frac{-e^{\frac{1}{4}} \sum_{l=0}^{N} \alpha_{l}-\int_{x}^{1} t^{-2\left(\nu_{N}+1\right)} f_{N}(\sqrt{t}) e^{\frac{1}{4 t^{2}}} d t}{x^{-2 \nu_{N}+1} e^{\frac{1}{4 x^{2}}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{f_{N}(\sqrt{x})}{\left(-2 \nu_{N}+1\right) x^{2}-\frac{1}{2}}=-2 f_{N}(0)=C_{N}(0)
\end{aligned}
$$

Thus, the function $x \mapsto C_{N}(x)$ is continuous on $[0,+\infty[$.
Accordingly, for x small enough, the function given by 21 has the following expansion:

$$
y(x)=\sum_{l=0}^{N} \alpha_{l}|x|^{\frac{l}{2}}+|x|^{\frac{N+1}{2}} R_{N}(|x|)
$$

where the function R_{N} is continuous on $[0,+\infty[$ and given by

$$
R_{N}(x)= \begin{cases}x^{2 \nu_{N}-1} V_{N}(x) e^{\frac{-1}{4 x^{2}}}, & x>0 \\ -2 f_{N}(0), & x=0\end{cases}
$$

$V_{N}(x)=-e^{\frac{1}{4}} \sum_{l=0}^{N} \alpha_{l}-\int_{x}^{1} t^{-2\left(\nu_{N}+1\right)} f_{N}(\sqrt{t}) e^{\frac{1}{4 t^{2}}} d t-\int_{1}^{+\infty} t^{-2(\nu+1)} f(\sqrt{t}) e^{\frac{1}{4 t^{2}}} d t$.
Lemma 8. The function y given by (21) satisfies:

$$
\lim _{x \rightarrow 0} x^{n} y^{(n)}(x)= \begin{cases}-2 h(0), & n=0 \\ 0, & n \geq 1\end{cases}
$$

Proof. Let y_{1} be the function defined on \mathbb{R} and given by

$$
y_{1}(x)= \begin{cases}x y^{\prime}(x)-(2 \nu-1) y(x), & x \neq 0 \tag{30}\\ -2(1-2 \nu) h(0), & x=0\end{cases}
$$

where y is the function given by (21).
From 20) and 30, we get $x^{2} y_{1}(x)=\frac{1}{2} y(x)+h(x), x \in \mathbb{R}$. Besides, the function y_{1} satisfies

$$
\left\{\begin{array}{l}
\left(x^{3} y_{1}\right)^{\prime}-\left(2 \nu x^{2}+\frac{1}{2}\right) y_{1}=h_{1}(x) \tag{31}\\
y_{1}(0)=-2(1-2 \nu) h(0)=-2 h_{1}(0)
\end{array}\right.
$$

where $h_{1}(x)=x h^{\prime}(x)+(1-2 \nu) h(x), x \in \mathbb{R}$. Notice that the function h_{1} satisfies the properties $\mathbf{P}_{i}, i=1,2$. So, by lemma 6, where ν is replaced by $\nu-1$ and h by h_{1}, the solution y_{1} of 31 , is in $L^{1}(\mathbb{R}) \cap C^{0}(\mathbb{R})$.
Clearly, $y_{1}(0)=\lim _{x \rightarrow 0} y_{1}(x)=\lim _{x \rightarrow 0} x y^{\prime}(x)-(2 \nu-1) y(x)$, on account of 30 .
So, $-2(1-2 \nu) h(0)=\lim _{x \rightarrow 0} x y^{\prime}(x)+2(2 \nu-1) h(0)$. Hence, $\lim _{x \rightarrow 0} x y^{\prime}(x)=0$.
Let $\left\{h_{n}\right\}_{n \geq 0}$ be the sequence of functions defined on \mathbb{R} and entirely given by

$$
\left\{\begin{array}{l}
h_{0}(x)=h(x), \tag{32}\\
h_{n+1}(x)=x h_{n}^{\prime}(x)+[1-2(\nu-n)] h_{n}(x), n \geq 0 .
\end{array}\right.
$$

For every integer $n \geq 0$, we can see that h_{n} satisfies the properties $\mathbf{P}_{i}, i=1,2$.
Let $\left(y_{n}\right)_{n \geq 0}$ be the sequence of functions given by

$$
\begin{equation*}
\begin{cases}y_{n+1}(x)= \begin{cases}x y_{n}^{\prime}(x)-(2(\nu-n)-1) y_{n}(x), & x \neq 0 \\ -2 h_{n+1}(0), & x=0 \\ y_{0}=y, \text { where } y \text { is given by 21. }\end{cases} \end{cases} \tag{33}
\end{equation*}
$$

By induction on the integer n, it is easy to show that the functions $y_{n}, n \geq 0$, satisfying

$$
\left\{\begin{array}{l}
\left(x^{3} y_{n}\right)^{\prime}-\left(2(\nu-n+1) x^{2}+\frac{1}{2}\right) y_{n}=h_{n}(x) \tag{34}\\
y_{n}(0)=-2 h_{n}(0)
\end{array}\right.
$$

In addition, we have $x^{2} y_{n+1}(x)=\frac{1}{2} y_{n}(x)+h_{n}(x), x \in \mathbb{R}$. From 34) and by lemma 6, the functions $y_{n}, n \geq 0$, are continuous on \mathbb{R}, and satisfying

$$
\lim _{x \rightarrow 0} y_{n}(x)=-2 h_{n}(0), \quad n \geq 0
$$

From (32) and (33), it comes that

$$
\begin{aligned}
-2(1-2(\nu-n)) h_{n}(0) & =-2 h_{n+1}(0)=\lim _{x \rightarrow 0} y_{n+1}(x) \\
& =\lim _{x \rightarrow 0}\left[x y_{n}^{\prime}(x)-(2(\nu-n)-1)\right] y_{n}(x) \\
& =\lim _{x \rightarrow 0} x y_{n}^{\prime}(x)-2(1-2(\nu-n)) h_{n}(0)
\end{aligned}
$$

This implies, $\lim _{x \rightarrow 0} x y_{n}^{\prime}(x)=0, n \geq 0$. By induction on the integer $k \geq 1$, let's show that $\lim _{x \rightarrow 0} x^{k} y_{n}^{(k)}(x)=0$, for every integer $n \geq 0$.
For $k=1$, we have already seen that $\lim _{x \rightarrow 0} x y_{n}^{\prime}(x)=0$, for every integer $n \geq 0$.
Suppose that the recurrence property is valid until the order m and let's show that
it remains valid to the order $m+1$.
By induction hypothesis and from 33, we obtain

$$
\begin{aligned}
0 & =\lim _{x \rightarrow 0} x^{m} y_{n+1}^{(m)}(x)=\lim _{x \rightarrow 0} x^{m}\left(x y_{n}^{\prime}(x)-(2(\nu-n)-1) y_{n}(x)\right)^{(m)} \\
& =\lim _{x \rightarrow 0} x^{m+1} y_{n}^{(m+1)}(x)+(m-2(\nu-n)+1) x^{m} y_{n}^{(m)}(x) \\
& =\lim _{x \rightarrow 0} x^{m+1} y_{n}^{(m+1)}(x)
\end{aligned}
$$

Hence, the recurrence property holds.
Accordingly, $\lim _{x \rightarrow 0} x^{k} y^{(k)}(x)=0$, for every integer $k \geq 1$, since $y_{0}=y$, where y is given by 21 .

3. Integral representations of $B[\nu]$ and $\mathcal{B}(\alpha)$.

3.1. An integral representation of $B[\nu]$.

Case $\nu \geq 0$.

Let us show that the integral representation of the linear functional $B[\nu]$ given by the authors in [2] remains valid for all $\nu \geq 0$. To do so, we need the following fundamental lemma.

Lemma 9. Consider the following integral: $S=\int_{0}^{+\infty} G(x) \sin x d x$, where G : $[0,+\infty[\rightarrow \mathbb{R}$ is a nonnegative, continuous and decreasing function on $[2 \pi,+\infty[$, satisfying the following condition:

$$
\begin{equation*}
\int_{0}^{\pi}[G(x)-G(x+\pi)] \sin x d x>0 . \tag{35}
\end{equation*}
$$

Then, $S>0$.
Proof. Let $S_{n}=\int_{0}^{\pi}[G(x+2 n \pi)-G(x+(2 n+1) \pi)] \sin x d x, n \geq 0$. Clearly, $\int_{0}^{2 n \pi} G(x) \sin x d x=\sum_{k=0}^{n-1} S_{k}, n \geq 1$. Since $\sin x \geq 0$ on $[0, \pi]$, and by assumption G is decreasing on $\left[2 \pi,+\infty\left[\right.\right.$, we get $S_{n} \geq 0, n \geq 1$. Therefore, $\int_{0}^{2 n \pi} G(x) \sin x d x \geq S_{0}, n \geq 1$. While n tends to $+\infty$ and by taking 35 into account, we obtain $S \geq S_{0}>0$.

Theorem 10. For any $\nu \geq 0$, we have $S_{\nu}>0$ and then the generalized Bessel linear functional $B[\nu]$ has the following integral representation:

$$
\begin{equation*}
\langle B[\nu], p\rangle=S_{\nu}^{-1} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2 \nu+1} e^{\frac{1}{4 t^{2}}-\frac{1}{4 x^{2}}} s\left(t^{2}\right) d t p(x) d x, p \in \mathcal{P} \tag{36}
\end{equation*}
$$

Proof. By lemmas 2 and 9 , where $G=G_{\nu}$, in order to show that $S_{\nu}>0$, just check the condition (35). To achieve this goal, we need to distinguish three cases.
$\mathbf{C}_{1} \cdot \nu=0$.
For $\nu=0$ in 15 , we get $\frac{1}{4} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \leq G_{0}(x) \leq \frac{1}{2} \frac{\ln \left(1+4 x^{4}\right)}{x} e^{-x}$, for all $x>0$. So, the inequality $\sqrt{35}$ is fulfilled if the following condition is verified,

$$
\int_{0}^{\pi} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x>2 \int_{0}^{\pi} \frac{\ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} e^{-x-\pi} \sin x d x
$$

A lower bound for $\int_{0}^{\pi} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin (x) d x$:
We always have
$\int_{0}^{\pi} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x=\int_{0}^{\frac{\pi}{2}} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x+\int_{\frac{\pi}{2}}^{\pi} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x$.
Since

$$
\begin{equation*}
\sin x \geq \frac{2}{\pi} x, \quad x \in\left[0, \frac{\pi}{2}\right] \tag{37}
\end{equation*}
$$

then $\int_{0}^{\frac{\pi}{2}} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x \geq \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \ln \left(1+8 x^{4}\right) e^{-x} d x$. From 19) taking with $x=\frac{\pi}{2}$, it follows that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x \geq \Delta_{1} \tag{38}
\end{equation*}
$$

where $\Delta_{1}=\frac{32}{\pi^{5}} \Omega_{4}\left(\frac{\pi}{2}\right) \ln \left(1+\frac{\pi^{4}}{2}\right) \simeq 0,216716$.
On the other hand, since $\ln (1+x) \geq \frac{\ln (1+\alpha)}{\alpha} x$, for all $x \in[0, \alpha]$ and $\alpha>0$, we get

$$
\begin{equation*}
\int_{\frac{\pi}{2}}^{\pi} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x \geq \Delta_{2} \tag{39}
\end{equation*}
$$

where $\Delta_{2}=\frac{\ln \left(1+8 \pi^{4}\right)}{\pi^{4}} \int_{\frac{\pi}{2}}^{\pi} x^{3} e^{-x} \sin x d x$, and after integration by parts, we obtain

$$
\Delta_{2}=\frac{e^{-\frac{\pi}{2}} \ln \left(1+8 \pi^{4}\right)}{2 \pi^{4}}\left\{e^{-\frac{\pi}{2}}\left(\pi^{3}+3 \pi^{2}+3 \pi\right)+\frac{\pi^{3}}{8}-\frac{3}{2} \pi-3\right\} \simeq 0,07620
$$

From (38) and (39), we get

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\ln \left(1+8 x^{4}\right)}{x} e^{-x} \sin x d x \geq \Delta_{3} \tag{40}
\end{equation*}
$$

where $\Delta_{3}=\Delta_{1}+\Delta_{2} \simeq 0,292916$.
An upper bound for $2 \int_{0}^{\pi} \frac{\ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} e^{-x-\pi} \sin x d x$:
The fact that the function $x \mapsto \frac{\ln \left(1+4 x^{4}\right)}{x}$ is decreasing on $[\pi,+\infty[$, yields

$$
\begin{equation*}
2 \int_{0}^{\pi} \frac{\ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} e^{-x-\pi} \sin x d x \leq \Delta_{4} \tag{41}
\end{equation*}
$$

where $\Delta_{4}=\frac{2 e^{-\pi} \ln \left(1+4 \pi^{4}\right)}{\pi} \int_{0}^{\pi} e^{-t} \sin t d t$ and after integrations by parts, we obtain $\Delta_{4}=\frac{\ln \left(1+4 \pi^{4}\right)}{\pi} e^{-\pi}\left(e^{-\pi}+1\right) \simeq 0,08563$. Clearly, $\Delta_{3}>\Delta_{4}$ and then 35 is fulfilled. $\mathbf{C}_{2} .0<\nu \leq \mu$, with $\mu \simeq 0,405589$.
Using (15), the inequality (35) is fulfilled if we have

$$
\begin{equation*}
\int_{0}^{\pi} \frac{e^{-x} \sin x \ln \left(1+8 x^{4}\right)}{x\left(1+\nu \ln \left(1+4 x^{4}\right)\right)} d x>2 \int_{0}^{\pi} \frac{e^{-x-\pi} \sin x \ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} d x \tag{42}
\end{equation*}
$$

For any $\nu>0$, since the function $x \mapsto \frac{1}{1+\nu \ln \left(1+4 x^{4}\right)}$ is decreasing on $[0, \pi]$, then

$$
\int_{0}^{\pi} \frac{e^{-x} \sin x \ln \left(1+8 x^{4}\right)}{x\left(1+\nu \ln \left(1+4 x^{4}\right)\right)} d x \geq \int_{0}^{\pi} \frac{e^{-x} \sin x \ln \left(1+8 x^{4}\right)}{x\left(1+\nu \ln \left(1+4 \pi^{4}\right)\right)} d x
$$

Clearly, the inequality (42) is satisfied if ν is positive and such that

$$
\begin{equation*}
\int_{0}^{\pi} \frac{e^{-x} \sin x \ln \left(1+8 x^{4}\right)}{x\left(1+\nu \ln \left(1+4 \pi^{4}\right)\right)} d x>2 \int_{0}^{\pi} \frac{e^{-x-\pi} \sin x \ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} d x . \tag{43}
\end{equation*}
$$

By the fact that $2 \int_{0}^{\pi} \frac{e^{-x-\pi} \sin x \ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} d x>0$, the inequality 43 is equivalent to $0<\nu<\Delta_{5}$, where

$$
\Delta_{5}=\frac{\int_{0}^{\pi} \frac{e^{-x} \sin x \ln \left(1+8 x^{4}\right)}{x} d x-2 \int_{0}^{\pi} \frac{e^{-x-\pi} \sin x \ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} d x}{2 \ln \left(1+4 \pi^{4}\right) \int_{0}^{\pi} \frac{e^{-x-\pi} \sin x \ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} d x} .
$$

From (40) and (41) and the fact that $\Delta_{3}-\Delta_{4}>0$, then

$$
\int_{0}^{\pi} \frac{e^{-x} \sin (x) \ln \left(1+8 x^{4}\right)}{x} d x-2 \int_{0}^{\pi} \frac{e^{-x-\pi} \sin (x) \ln \left(1+4(x+\pi)^{4}\right)}{x+\pi} d x>0,
$$

and $\Delta_{5} \geq \mu$, where $\mu=\frac{\Delta_{3}-\Delta_{4}}{\Delta_{4} \ln \left(1+4 \pi^{4}\right)} \simeq 0,405589$.
Accordingly, the inequality (43) is satisfied for all ν on $] 0, \mu$] and hence (42) is satisfied for all ν on the interval $] 0, \mu]$.
$\mathbf{C}_{3} . \nu>\mu$.
For $\nu \geq 0$, if we take (12) into account, we infer that (35) is fulfilled if

$$
\begin{equation*}
\int_{0}^{\pi} \frac{x^{3} e^{-x} \sin x}{1+4(\nu+1) x^{4}} d x>\int_{0}^{\pi} \frac{(\pi+x)^{3} e^{-x-\pi} \sin x}{1+4 \nu(\pi+x)^{4}} d x . \tag{44}
\end{equation*}
$$

A lower bound for $\int_{0}^{\pi} \frac{x^{3} e^{-x} \sin x}{1+4(\nu+1) x^{4}} d x$:
We can write $\int_{0}^{\pi} \frac{x^{3} e^{-x} \sin x}{1+4(\nu+1) x^{4}} d x=\int_{0}^{\frac{\pi}{2}} \frac{x^{3} e^{-x} \sin x}{1+4(\nu+1) x^{4}} d x+\int_{\frac{\pi}{2}}^{\pi} \frac{x^{3} e^{-x} \sin x}{1+4(\nu+1) x^{4}} d x$. By 37 , $\int_{0}^{\frac{\pi}{2}} \frac{x^{3} e^{-x} \sin x}{1+4(\nu+1) x^{4}} d x \geq \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{x^{4} e^{-x}}{1+4(\nu+1) x^{4}} d x$. From 18 with $x=(\pi / 2)$, we obtain

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{x^{3} e^{-x} \sin (x)}{1+4(\nu+1) x^{4}} d x \geq \Theta_{1}(\nu), \quad \nu \geq 0 \tag{45}
\end{equation*}
$$

where $\Theta_{1}(\nu)=\frac{\frac{8}{\pi} \Omega_{4}\left(\frac{\pi}{2}\right)}{4+(\nu+1) \pi^{4}} \simeq \frac{1,35110}{4+(\nu+1) \pi^{4}}$.
The fact that the function $x \mapsto \frac{x^{4}}{1+4(\nu+1) x^{4}}$ is increasing on $\left[\frac{\pi}{2}, \pi\right]$, leads to

$$
\begin{equation*}
\int_{\frac{\pi}{2}}^{\pi} \frac{x^{3}}{1+4(\nu+1) x^{4}} e^{-x} \sin x d x \geq \Theta_{2}(\nu), \quad \nu \geq 0, \tag{46}
\end{equation*}
$$

where $\Theta_{2}(\nu)=\frac{\frac{\pi^{3}}{2} \int \frac{\pi}{2} e^{-x} \sin x d x}{4+(\nu+1) \pi^{4}}=\frac{\frac{\pi^{3}}{4}\left(1+\frac{\pi}{2}\right) e^{-\pi}}{4+(\nu+1) \pi^{4}} \simeq \frac{1.94637}{4+(\nu+1) \pi^{4}}$.
From 45 and 46, $\int_{0}^{\pi} \frac{x^{3}}{1+4(\nu+1) x^{4}} e^{-x} \sin x d x \geq \Theta_{3}(\nu)$, for every $\nu \geq 0$, where $\Theta_{3}(\nu)=\Theta_{1}(\nu)+\Theta_{2}(\nu)=\frac{\omega_{1}}{4+(\nu+1) \pi^{4}}$, with $\omega_{1}=\frac{8}{\pi} \Omega_{4}\left(\frac{\pi}{2}\right)+\frac{\pi^{3}}{4}\left(1+e^{\frac{\pi}{2}}\right) e^{-\pi} \simeq 3,29747$.
An upper bound for $\int_{0}^{\pi} \frac{(\pi+x)^{3}}{1+4 \nu(\pi+x)^{4}} e^{-x-\pi} \sin x d x$.
Since the function $x \mapsto \frac{x^{4}}{1+4(\nu+1) x^{4}}$ is increasing on $[\pi, 2 \pi]$, then

$$
\begin{aligned}
\int_{0}^{\pi} \frac{(\pi+x)^{3}}{1+4 \nu(\pi+x)^{4}} e^{-x-\pi} \sin x d x & =\int_{0}^{\pi} \frac{1}{\pi+x} \frac{(\pi+x)^{4}}{1+4 \nu(\pi+x)^{4}} e^{-x-\pi} \sin x d x \\
& \leq \frac{1}{\pi} \frac{(2 \pi)^{4}}{1+4 \nu(2 \pi)^{4}} e^{-\pi} \int_{0}^{\pi} e^{-x} \sin x d x
\end{aligned}
$$

So, $\int_{0}^{\pi} \frac{(\pi+x)^{3} e^{-x-\pi} \sin x}{1+4 \nu(\pi+x)^{4}} d x \leq \Theta_{4}(\nu)$, where $\Theta_{4}(\nu)=\frac{16 \pi^{3} e^{-\pi} \int_{0}^{\pi} e^{-x} \sin x d x}{1+64 \pi^{4} \nu}=\frac{\omega_{2}}{1+64 \pi^{4} \nu}$ and $\omega_{2}=8 \pi^{3} e^{-\pi}\left(e^{-\pi}+1\right) \simeq 11,18244$. Thus, 44 is fulfilled if $\Theta_{3}(\nu)>\Theta_{4}(\nu)$, i.e., if $\nu>\frac{\omega_{2}\left(\pi^{4}+4\right)-\omega_{1}}{\pi^{4}\left(64 \omega_{1}-\omega_{2}\right)} \simeq 0,05808$, and so, if $\nu>\mu \simeq 0,405589$.

Hence, the desired result of the theorem is an immediate consequence of the three cases already treated.

Case $\nu<0$.
Using (1), the linear function $B[\nu]$ where $\nu \in \mathbb{C}, \nu \neq-n, n \geq 1$, satisfies

$$
\begin{aligned}
& B[\nu+1]=-4(\nu+1) x^{2} B[\nu] \\
& -2(\nu+1) B[\nu]=x(B[\nu+1])^{\prime}-(1+2 \nu) B[\nu+1] .
\end{aligned}
$$

More general, by an easy induction we can show that

$$
\begin{equation*}
(-2)^{m} \frac{\Gamma(\nu+m+1)}{\Gamma(\nu+1)} B[\nu]=\sum_{l=0}^{m} \alpha_{m, l} x^{l} B^{(l)}[\nu+m], m \geq 0 \tag{47}
\end{equation*}
$$

where $\left(\alpha_{m, l}\right)_{l=0}^{m}, m \geq 0$, are given by

$$
\left\{\begin{array}{l}
\alpha_{m, m}=1, m \geq 0 \tag{48}\\
\alpha_{m, l-1}+(l-1-2(\nu+m)) \alpha_{m, l}=\alpha_{m+1, l}, \quad 1 \leq l \leq m, m \geq 1 \\
\alpha_{m+1,0}=-(1+2(\nu+m)) \alpha_{m, 0}, \quad m \geq 0
\end{array}\right.
$$

Theorem 11. Let $\nu<0$, with $\nu \neq-n, n \geq 1$. For each integer $m \geq 1$, such that $\nu>-m$, the generalized Bessel linear functional $B[\nu]$ has the following integral representation:

$$
\begin{gather*}
\langle B[\nu], p\rangle=\int_{-\infty}^{+\infty} V_{\nu+m}(x) p(x) d x, \quad p \in \mathcal{P}, \text { and where } \tag{49}\\
V_{\nu+m}(x)=\frac{\Gamma(\nu+1)}{(-2)^{m} S_{\nu+m} \Gamma(\nu+m+1)} \sum_{l=0}^{m} \alpha_{m, l} x^{l} U_{\nu+m}^{(l)}(x) \tag{50}
\end{gather*}
$$

The sequence $\left(\alpha_{m, l}\right)_{l=0}^{m}$ is given by (48), and

$$
U_{\nu+m}(x)=\left\{\begin{array}{l}
0, \quad x=0 \tag{51}\\
\frac{1}{x^{2}} \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2(\nu+m)+1} e^{\frac{1}{4 t^{2}}-\frac{1}{4 x^{2}}} s\left(t^{2}\right) d t, \quad x \neq 0
\end{array}\right.
$$

Proof. Let $\nu<0$, with $\nu \neq-n, n \geq 1$. Now, let $m \geq 1$ be an integer such that $\nu>-m$. From (4), the function $U_{\nu+m}$ satisfies

$$
\left(x^{3} y\right)^{\prime}-\left(2(\nu+m+1) x^{2}+\frac{1}{2}\right) y=g(x), \quad y(0)=0
$$

where $g(x)=-|x| s\left(x^{2}\right)=-|x| e^{-\sqrt{|x|}} \sin (\sqrt{|x|})$ for all $x \in \mathbb{R}$. Clearly, $g(x)=$ $f(\sqrt{|x|})$, where f is an entire function, $f(t)=-t^{2} e^{-t} \sin t=\sum_{n=0}^{+\infty} a_{n} t^{n}$ with $a_{0}=$ $a_{1}=0$ and $a_{n}=-\frac{2^{\frac{n-2}{2}}}{(n-2)!} \cos \left(\frac{3 n \pi}{4}\right), n \geq 2$. Besides, f satisfies \mathbf{P}_{2}. In concordance of (20), $U_{\nu+m}$ is a solution of the first-order differential equation $E_{\nu+m}(g)$. In view of lemmas 6 and 8 and by using theorem $10, U_{\nu+m}$ is even, infinitely differentiable on $\mathbb{R}-\{0\}$, in $L^{1}(\mathbb{R}) \cap C^{0}(\mathbb{R})$ and when $|x| \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|x^{n} U_{\nu+m}^{(n)}(x)\right|=\mathrm{O}\left(\frac{1}{|x|^{k+2}}\right), \text { for every integers } k \geq k_{\nu} \text { and } n \geq 0 \tag{52}
\end{equation*}
$$

Moreover, for every integer $n \geq 0$, we have $\lim _{x \rightarrow 0} x^{n} U_{\nu+m}^{(n)}(x)=0$. Since $S_{\nu+m}>0$, then $B[\nu+m]$ has the following integral representation:

$$
\begin{equation*}
\langle B[\nu+m], p\rangle=S_{\nu+m}^{-1} \int_{-\infty}^{+\infty} U_{\nu+m}(x) p(x) d x, \quad p \in \mathcal{P} \tag{53}
\end{equation*}
$$

where

$$
U_{\nu+m}(x)=\left\{\begin{array}{l}
0, x=0 \\
\frac{1}{x^{2}} \int_{|x|}^{+\infty}\left(\frac{|x|}{t}\right)^{2(\nu+m)+1} e^{\frac{1}{4 t^{2}}-\frac{1}{4 x^{2}}} s\left(t^{2}\right) d t, x \neq 0
\end{array}\right.
$$

By (47), 52) and (53), we get after finite number of integrations by parts,

$$
\begin{aligned}
(-2)^{m} \frac{\Gamma(\nu+m+1)}{\Gamma(\nu+1)}\langle B[\nu], p\rangle & =\sum_{l=0}^{m}(-1)^{l} a_{m, l}\left\langle B[\nu+m],\left(x^{l} p\right)^{(l)}\right\rangle \\
& =S_{\nu+m}^{-1} \sum_{l=0}^{m}(-1)^{l} a_{m, l} \int_{-\infty}^{+\infty} U_{\nu+m}(t)\left(t^{l} p\right)^{(l)}(t) d t \\
& =S_{\nu+m}^{-1} \int_{-\infty}^{+\infty} \sum_{l=0}^{m} a_{m, l} t^{l} U_{\nu+m}^{(l)}(t) p(t) d t
\end{aligned}
$$

This archived the proof of the theorem.
3.2. An integral representation of $\mathcal{B}(\alpha)$. Recall that the Bessel linear functional $\mathcal{B}(\alpha)$, where α is a complex number such that $\alpha \neq-(n / 2), n \geq 0$, is D-classical satisfying [7]:

$$
\left(x^{2} \mathcal{B}(\alpha)\right)^{\prime}-2(\alpha x+1) \mathcal{B}(\alpha)=0
$$

By referring to [2], there is a connection formula between the two linear functionals $B[\nu]$ and $\mathcal{B}(\alpha)$,

$$
\sigma B[\nu]=h_{\frac{1}{8}} \mathcal{B}\left(\frac{\nu+1}{2}\right), \text { for all } \nu \neq-n, n \geq 1
$$

Equivalently,

$$
\begin{equation*}
\mathcal{B}(\alpha)=h_{8} \sigma B[2 \alpha-1], \text { for all } \alpha \neq-(n / 2), n \geq 0 \tag{54}
\end{equation*}
$$

As a straightforward consequence of (54) and by theorems 10 and 11 , we obtain an integral representation of $\mathcal{B}(\alpha)$, for all $\alpha \in \mathbb{R}$ such that $\alpha \neq-(n / 2), n \geq 0$.
For $\alpha \geq(1 / 2)$, we have

$$
\begin{equation*}
\langle\mathcal{B}(\alpha), p\rangle=\int_{0}^{+\infty} \frac{U_{2 \alpha-1}\left(\sqrt{\frac{t}{8}}\right)}{S_{2 \alpha-1} \sqrt{8 t}} p(t) d t, p \in \mathcal{P} \tag{55}
\end{equation*}
$$

where $S_{2 \alpha-1}>0$ and the function $U_{2 \alpha-1}$ is given by (2).
For $\alpha<\frac{1}{2}$ and $\alpha \neq-(n / 2), n \geq 0$, we have for each integer $m \geq 1$ such that $\alpha>\frac{-m+1}{2}$,

$$
\begin{equation*}
\langle\mathcal{B}(\alpha), p\rangle=\int_{0}^{+\infty} \frac{V_{2 \alpha-1+m}\left(\sqrt{\frac{t}{8}}\right)}{\sqrt{8 t}} p(t) d t, \quad p \in \mathcal{P} \tag{56}
\end{equation*}
$$

where the function $V_{2 \alpha-1+m}$ is given by 50 .

Acknowledgments. We thank the referees for their comments and suggestions in order to improve the presentation of this manuscript. The work of the second author was supported by University of Hafr-Al-Batin Saudi Arabia.

References

[1] T.S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach. New York, 1978.
[2] A. Ghressi and L. Kheriji, Some new results about a symmetric D-semiclassical linear form of class one. Taiwanese J. Math. 112 (2007) 371-382.
[3] W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1959) 77-81.
[4] F. Marcellán and R. Sfaxi, A characterization of weakly regular linear functionals. Rev. Acad. Colomb. Cienc. 31119 (2007) 285-295.
[5] F. Marcellán and R. Sfaxi, Second structure relation for semiclassical orthogonal polynomials. J. Comput. Appl. Math. 2002 (2007) 537-554.
[6] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semi-classiques. In Orthogonal Polynomials and Their Applications, C. Brezinski et al., Eds., Proc. Erice, 1990, Ann. Comp. Appl. Math. IMACS 99 (1991) 5-130.
[7] P. Maroni, Fonctions eulériennes. Polynômes orthogonaux classiques. In Techniques de l'ingénieur. 154 (1994) 1-30.
[8] P. Maroni, An integral representation for the Bessel form. J. Comput. Appl. Math. 157 (1995) 251-260.
[9] S. Shanti Gupta and N. Mrudulla Waknis, A system of inequalities for the incomplete gamma function and the normal integral. Ann. Math. Statist. 361 (1965) 139-1497.

Karima Ali Khelil, Dept. Math., Fac. Sci., University of Badji Mokhtar-Annaba, Algeria

E-mail address: kalikhelil@gmail.com
Ridha Sfaxi, Coll. Edu. of Girls, Scientific Sections, University of Hafr-Al-Batin, Saudi Arabia

E-mail address: ridhasfaxi@gmail.com
Ammar Boukhemis, Dept. Math., Fac. Sci., University of Badji Mokhtar-Annaba, Algeria

E-mail address: aboukhemis@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 33C45, 42C05.
 Key words and phrases. Linear Functional; Integral representation; Semi-classical functional; Incomplete Gamma function; Exponential integral.
 © 2017 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted April 24, 2017. Published June 1, 2017.
 Communicated by Francisco Marcellan.

