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Abstract. In the present paper, we introduce over symmetric set on a inner

product quasilinear spaces. We establish some new results related to this new
concept. Further, we obtain new conclusions for orthogonal and orthonormal

subspaces of inner product quasilinear spaces. These results generalize recent

well known results in the linear inner product spaces. Also, some examples
have been given which provide an important contribution to understand the

structure of inner product quasilinear spaces.

1. Introduction

The theory of quasilinear analysis is one of the fundamental theories in
nonlinear analysis which has various applications such as integral and differential
equations, approximation theory and bifurcation theory. In [2], Aseev generalized
the concept of linear spaces, using the partial order relation hence they have defined
the quasilinear spaces. He also described the convergence of sequences and norm
in quasilinear space. Further, he introduced the concept of Ω−space which is only
meaningful in normed quasilinear spaces.

Later, various authors introduce new results on quasilinear spaces ( [1], [7],
[8], [9], [5],[11] etc.). The recently, in [4], inner product quasilinear spaces have
been investigated. Again in this paper, some new notions such as Hilbert quasilin-
ear spaces, orthogonality, orthonormality, orthogonal complement in inner product
quasilinear spaces etc. have been defined as an generalizations of inner product
space in classical analysis. In recent time, some new algebraic properties of quasi-
linear spaces which is very significant to improvement of quasilinear algebra are
given by [3] and [5].

In this paper, motivated by the work of Assev [2] and Markow [8], we introduce
new concepts on inner product quasilinear spaces and prove some theorems related
to these notions. Moreover, we investigate some algebraic properties of some sub-
space of inner product quasilinear spaces. Further, the aim of this paper is to
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extend the results in [4]. Our consequences generalize the some theorems which
were given in linear inner product spaces.

2. Quasilinear Spaces and Hilbert Quasilinear Spaces

Let us start this section by introducing the definition of a quasilinear spaces
and some its basic properties given by Aseev [2].

Definition 1. A set X is called a quasilinear space (QLS, for short), if a partial
order relation “≤”, an algebraic sum operation, and an operation of multiplication
by real numbers are defined in it in such way that the following conditions hold for
any elements x, y, z, v ∈ X and any real numbers α, β ∈ R:

(1) x ≤ x;
(2) x ≤ z if x ≤ y and y ≤ z,
(3) x = y if x ≤ y and y ≤ x,
(4) x+ y = y + x,
(5) x+ (y + z) = (x+ y) + z,
(6) there exists an element θ ∈ X such that x+ θ = x,
(7) α · (β · x) = (α · β) · x,
(8) α · (x+ y) = α · x+ α · y,
(9) 1 · x = x,
(10) 0 · x = θ,
(11) (α+ β) · x ≤ α · x+ β · x,
(12) x+ z ≤ y + v if x ≤ y and z ≤ v,
(13) α · x ≤ α · y if x ≤ y.
A linear space is a quasilinear space with the partial order relation “=”. The

most popular example which is not a linear space is the set of all closed intervals
of real numbers with the inclusion relation ” ⊆ ”,algebraic sum operation

A+B = {a+ b : a ∈ A, b ∈ B}

and the real-scalar multiplication

λA = {λa : a ∈ A} .

We denote this set by ΩC(R). Another one is Ω(R), the set of all compact subsets
of real numbers. By a slight modification of algebraic sum operation (with closure)
such as

A+B = {a+ b : a ∈ A, b ∈ B}
and by the same real-scalar multiplication defined above and by the inclusion re-
lation we get the nonlinear QLS, ΩC(E) and Ω(E), the space of all nonempty
closed bounded and convex closed bounded subsets of some normed linear space E,
respectively.

Lemma 1. Suppose that any element x in a QLS X has an inverse element x′ ∈ X.
Then the partial order in X is determined by equality, the distributivity conditions
hold, and consequently, X is a linear space [2].

Suppose that X is a QLS and Y ⊆ X. Then Y is called a subspace of X whenever
Y is a QLS with the same partial order and the restriction to Y of the operations
on X. One can easily prove the fallowing theorem using the condition of to be a
QLS. It is quite similar to its linear space analogue.
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Theorem 2. Y is a subspace of a QLS X if and only if, for every, x, y ∈ Y and
α, β ∈ R, αx+ βy ∈ Y .

Let X be a QLS. An x ∈ X is said to be symmetric if (−1) · x = −x = x,
and Xd denotes the set of all such elements. θ denotes the zero’s, additive unit
of X and it is minimal, i.e., x = θ if x ≤ θ. An element x′ is called inverse of x
if x + x′ = θ. The inverse is unique whenever it exists and x′ = −x in this case.
Sometimes x′ may not be exist but −x is always meaningful in QLSs. An element
x possessing an inverse is called regular, otherwise is called singular. For a singular
element x we should note that x − x 6= 0. Now, Xr and Xs stand for the sets of
all regular and singular elements in X, respectively. Further, Xr, Xd and Xs ∪ {0}
are subspaces of X and they are called regular, symmetric and singular subspaces
of X, respectively [11].

Proposition 3. In a quasilinear space X every regular element is minimal [11].

Definition 2. Let X be a QLS. A real function ‖.‖X : X −→ R is called a norm
if the following conditions hold [2]:

(14) ‖x‖X > 0 if x 6= 0,
(15) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X ,
(16) ‖α · x‖X = |α| · ‖x‖X ,
(17) if x ≤ y, then ‖x‖X ≤ ‖y‖X ,
(18) if for any ε > 0 there exists an element xε ∈ X such that, x ≤ y + xε and

‖xε‖X ≤ ε then x ≤ y.
A quasilinear space X with a norm defined on it is called normed quasilinear

space (NQLS, for short). It follows from Lemma 1 that if any x ∈ X has an inverse
element x′ ∈ X, then the concept of a NQLS coincides with the concept of a real
normed linear space.

Let X be a NQLS. Hausdorff or norm metric on X is defined by the equality

hX(x, y) = inf {r ≥ 0 : x ≤ y + ar1, y ≤ x+ ar2, ‖ari ‖ ≤ r} .

Since x ≤ y + (x− y) and y ≤ x+ (y − x), the quantity hX(x, y) is well-defined
for any elements x, y ∈ X, and

hX(x, y) ≤ ‖x− y‖X . (2.1)

It is not hard to see that this function hX(x, y) satisfies all of the metric axioms.

Lemma 4. The operations of algebraic sum and multiplication by real numbers are
continuous with respect to the Hausdorff metric. The norm is continuous function
respect to the Hausdorff metric [2].

Example 1. Let E be a Banach space. A norm on Ω(E) is defined by

‖A‖Ω(E) = sup
a∈A
‖a‖E .

Then Ω(E) and ΩC(E) are normed quasilinear spaces. In this case the Hausdorff
metric is defined as usual:

hΩC(E)(A,B) = inf{r ≥ 0 : A ⊂ B + Sr(θ), B ⊂ A+ Sr(θ)},

where Sr(θ) denotes a closed ball of radius r about θ ∈ X [2].
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Definition 3. Let X be a quasilinear space. A mapping 〈 , 〉 : X×X → R is called
an inner product on X if for any x, y, z ∈ X and α ∈ R the following conditions
are satisfied [4]:

(19) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
(20) 〈αx, y〉 = α 〈x, y〉
(21) 〈x, y〉 = 〈y, x〉
(22) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0
(23) if x ≤ y and u ≤ v then 〈x, u〉 ≤ 〈y, v〉
(24) if for any ε > 0 there exists an element xε ∈ X such that x ≤ y + xε and

〈xε, xε〉 ≤ ε then x ≤ y.
A quasilinear space with an inner product is called a inner product quasilinear

space, briefly, IPQLS.

Example 2. ΩC(R) is a IPQLS with inner product defined by

〈A,B〉 = sup{ab : a ∈ A, b ∈ B}.

Every IPQLS X is a NQLS with the norm defined by

‖x‖ =
√
〈x, x〉

for every x ∈ X [4].

Proposition 5. If in a IPQLS xn → x and yn → y, then 〈xn, yn〉 → 〈x, y〉 [4].

A IPQLS is called Hilbert QLS, if it is complete according to the Hausdorff
metric.

Example 3. Let E be an inner product space. Then we know that Ω(E) is a IPQLS
and it is complete with respect to Hausdorff metric. So, Ω(E) is a Hilbert QLS [4].

Definition 4. (Orthogonality) An element x of a IPQLS X is said to be orthogonal
to an element y ∈ X if

〈x, y〉 = 0.

We also say that x and y are orthogonal and we write x ⊥ y. Similarly, for subsets
α, β ⊆ X we write x ⊥ α if x ⊥ z for all z ∈ α and α ⊥ β if a ⊥ b for all a ∈ α
and b ∈ β [4].

An orthonormal set M ⊂ X is an orthogonal set in X whose elements have norm
1, that is, for all x, y ∈M

< x, y >=

{
0 , x 6= y
1 , x = y

Definition 5. Let A be a nonempty subset of an quasilinear inner product space
X. An element x ∈ X is said to be orthogonal to A, denoted by x ⊥ A, if 〈x, y〉 = 0
for every y ∈ A.

Theorem 6. For any subset A of an IPQLS X, A⊥ is a closed subspace of X [4].

Definition 6. Let (X,≤) be a QLS, {xk}nk=1 ⊂ X and {λk}nk=1 ⊂ R. If

θ ≤ λ1x1 + λ2x2 + ...+ λnxn

implies λ1 = λ2 = ... = λn = 0, then {xk}nk=1 is said to be quasilinear inde-
pendent (ql-independent) otherwise {xk}nk=1is said to be quasilinear dependent (ql-
dependent) [3].
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Definition 7. Let X be a QLS and y ∈ X. The set of all regular elements preceding
from y is called floor of y, and Fy denotes the set of all such elements. Therefore,

Fy = {z ∈ Xr : x ≤ y} .
The floor of any subset M of X is the union of floors of all elements in M and is
denoted by FM [5]. Note again that Xr is the regular subspace of X.

3. Main Results

In this part, we define the over symmetric subset of any QLS which are new
concept. Then we give new results related to new notion. Also, in this section,
we give some new theorems with important treatment about orthogonality and
orthonormality on IPQLS.

Definition 8. Let X be a QLS. y is called over symmetric element of X whenever
there exist a x ∈ Xd such that x ≤ y. All over symmetric elements set of X denoted
by Xod.

Proposition 7. If X is an IPQLS, Xod is a subspace of X.

Proof. From Definition 8, we may find a, b ∈ Xd such that a ≤ x and b ≤ y for
every x, y ∈ Xod. By (12) and (13), we get

αa+ βb ≤ αx+ βy

for every α, β ∈ R. By Theorem 2, we obtain αa + βb ∈ Xd. This shows that
αx+ βy ∈ Xod.

Proposition 8. Set of all over symmetric elements of a Hilbert QLS X is closed.

Proof. Suppose that (xn) is a sequence in Xod and (xn) → x ∈ X for n → ∞.
Then for every ε > 0 there exist a n0 ∈ N such that the condition

xn ≤ x+ aε1,n, x ≤ xn + aε2,n,
∥∥aεi,n∥∥ ≤ ε

hold for every n > n0. Otherwise, since (xn) is a sequence in Xod, we find bn ∈ Xd

such that bn ≤ xn for every n ∈ N. From here, we have

bn ≤ x+ aε1,n,
∥∥aε1,n∥∥ ≤ ε

for every n ∈ N. Since X is a Hilbert QLS, we find εı > 0 such that
〈
aε1,n, a

ε
1,n

〉
≤

ε2 = εı. So, we have
bn ≤ x+ aε1,n,

〈
aε1,n, a

ε
1,n

〉
≤ εı.

From (24), we obtain bn ≤ x for every n ∈ N. Then, we have x ∈ Xod, this proves
the theorem.

Theorem 9. (ΩC(R))od is a ql-dependent subset of ΩC(R).

Proof. Suppose
0 ≤ λ1x1 + λ2x2 + . . .+ λnxn, (3.1)

for some x1, x2, . . . , xn ∈ (ΩC(R))od and λ1, λ2, . . . , λn ∈ R. By Definition 8, we
have bn ∈ Xd such that bn ≤ xn for every n ∈ N. From (12) and (13), we find

λ1b1 + λ2b2 + . . .+ λnbn ≤ λ1x1 + λ2x2 + . . .+ λnxn.

Since all elements of (ΩC(R))d contain 0, we get

0 ≤ bn
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for all n in N. From (12), for every λ1, λ2, . . . , λn ∈ R scalars, 0 ≤ λ1b1+λ2b2+. . .+
λnbn inequality is satisfy. This implies that (3.1) is satisfy for every λ1, λ2, . . . , λn ∈
R.

Theorem 10. Let X be a IPQLS. Xd is a closed subspace of X.

Proof. Let (xn) ∈ Xd and xn → x ∈ X for n→∞. By Lemma 4, we say

xn → x⇒ −xn → −x.
Since (xn) ∈ Xd, xn = −xn for every n ∈ N. From here, we obtain

xn → −x
for all n ∈ N. This is true if and only if x = −x. This proves that x ∈ Xd. We can
easily show that Xd is a subspace of X.

Example 4. Consider the set A = {{−1, 1}} in (Ω(R))d. It is obvious that
{0} ⊆ α · {−1, 1} if and only if α = 0 where {0} is the zeros of the QLS (Ω(R))d.
Therefore, the singleton A = {{−1, 1}} is ql-independent set in (Ω(R))d. How-
ever, the singleton B = {{−1, 1, 0}} is ql-independent since {0} ⊆ β. {−1, 1, 0} for
β = 1 6= 0.

Theorem 11. Any orthonormal subset of an IPQLS can not contain symmetric
elements.

Proof. Assume that x be a symmetric element of an orthonormal subset of inner
product quasilinear space X. Since ‖x‖2 = 1, we get 〈x, x〉 = 1. Otherwise, x = −x
from x is a symmetric element. From here, we have

〈x, x〉 = 〈x,−x〉 = 1.

Whereas, by (20), we find

〈x,−x〉 = −1 · 〈x, x〉 = −1.

This is a contradiction since both 〈x, x〉 = 1 and 〈x, x〉 = −1.

Theorem 12. Any orthonormal subset of an IPQLS can not contain over sym-
metric elements.

Proof. Let x be an over symmetric element of orthonormal subset of inner product
quasilinear space X. Since x is an over symmetric element, we find a y ∈ Xd such
that y ≤ x. Moreover, by (23),

〈y, y〉 ≤ 〈x, x〉 = 1.

This gives ‖y‖2 ≤ 1. On the other hand, since y ∈ Xd, we obtain

〈y, y〉 = −〈y, y〉 ≤ 1

which means that −‖y‖2 ≤ 1. Therefore, y is not a symmetric element of X. This
complete the proof.

Remark 1. We know that only zero element is a symmetric element in a classical
linear space. But, in a QLS has symmetric element other than 0. Further, set of
symmetric elements of a QLS may not include 0.

Example 5. Let X = {−1, 1} ∈ Ω(R). Since −X = {−1, 1}, X is a symmetric
element of Ω(R). But X does not contain {0}.
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Example 6. We consider ΩC(R)od subspace of ΩC(R). By Definition 7, in this
subspace, since floors of all elements will be empty set, we get

FΩC(R)od =
⋃

y∈ΩC (R)od

Fy

= ∅
For example, let [−1, 2] ∈ ΩC(R)od. Also, since (ΩC(R)od)r = ∅, F[−1,2] = ∅.

Similar to the ΩC(R)od, floor of ΩC(R)d is empty. We can easily show that floors
of Ω(R)od and Ω(R)d are empty similar to the ΩC(R)od and ΩC(R)d.

Theorem 13. Let X be an IPQLS and (xn) is any sequence in X. For every
x, y ∈ X we have

y⊥xn and xn → x implies y⊥x.

Proof. Let y⊥xn and xn → x in IPQLS X. Then for all n ∈ N we have

〈y, xn〉 = 0

and for every ε > 0 there exists a n0 ∈ N such that the conditions

xn ≤ x+ aε1,n, x ≤ xn + aε2,n,
∥∥aεi,n∥∥ ≤ ε

hold for every n > n0. Since X is an IPQLS, by (24), we get

xn ≤ x and x ≤ xn
for all n ∈ N. Clearly, y ≤ y is satisfy for every y ∈ X in an IPQLS X. Therefore,
by (23), we have

〈xn, y〉 ≤ 〈x, y〉 and 〈x, y〉 ≤ 〈xn, y〉 .
This gives 〈x, y〉 = 0 since 〈xn, y〉 = 0 for all n ∈ N.

Theorem 14. Let X be an IPQLS and (xn) is any sequence in X. For every
x ∈ X we have

‖xn‖ → ‖x‖ and 〈xn, x〉 → 〈x, x〉 implies xn → x.

Proof. Suppose that ‖xn‖ → ‖x‖ and 〈xn, x〉 → 〈x, x〉. By (2.1), we get

h2 (xn, x) ≤ ‖xn − x‖2

= 〈xn − x, xn − x〉
= ‖xn‖2 − 2 〈xn, x〉+ ‖x‖2 .

By letting n→∞, we obtain h (xn, x) ≤ 0. This proves that the xn is a convergent
to x in an IPQLS X.

Although, x + y⊥x − y when ‖x‖ = ‖y‖ in a classical inner product space,
x+ y⊥x− y may not be true when ‖x‖ = ‖y‖ in an IPQLS.

Example 7. We know from [2], ΩC(R) is an NQLS with ‖A‖ = supa∈A |a|. Let
A = [−1, 1] , B = [0, 1] ∈ ΩC(R). We thus have ‖A‖ = supa∈[−1,1] |a| = 1 and

‖B‖ = supa∈[0,1] |b| = 1. But, since

A+B = [−1, 2] and A−B = [−2, 1]

we have

〈A+B,A−B〉 = sup {a.b : a ∈ [−1, 2] , b ∈ [−2, 1]}
= 2.
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Theorem 15. If X be an IPQLS, then

x⊥y ⇐⇒ ‖x− αy‖ = ‖x+ αy‖

for every x, y ∈ X.

Proof. The proof of theorem is similar to classical linear counterpart.

Similar to the linear space, in an IPQLS X,

Theorem 16. Let X and Y be IPQLSs and T : X → Y be a quasilinear operator.
For every x, x1, x2 ∈ X,

‖x‖ ≤ ‖Tx‖
if and only if

〈x1, x2〉 ≤
1

2
(〈T (x1) , T (x1)〉+ 〈T (x2) , T (x2)〉) .

Proof. Let ‖x‖ ≤ ‖Tx‖ for every x ∈ X. Suppose there exists y1,y2 ∈ Y such that
T (x1) = y1 and T (x2) = y2 for every x1, x2 ∈ X. Since T is a quasilinear operator,
we get

T (x1 + x2) ≤ T (x1) + T (x2) and T (x1 − x2) ≤ T (x1)− T (x2) .

By (17), we have

‖T (x1 + x2)‖ ≤ ‖y1 + y2‖ and ‖T (x1 − x2)‖ ≤ ‖y1 − y2‖ .

Moreover, by the parallelogram law

4 〈x1, x2〉 ≤ ‖x1 + x2‖2 + ‖x1 + x2‖2

≤ ‖T (x1 + x2)‖2 + ‖T (x1 − x2)‖2

≤ ‖y1 + y2‖2 + ‖y1 − y2‖2

= 2
(
‖y1‖2 + ‖y2‖2

)
.

This gives 〈x1, x2〉 ≤ 1
2 (〈T (x1) , T (x1)〉+ 〈T (x2) , T (x2)〉).

On the other hand, 〈x1, x2〉 ≤ 1
2 (〈T (x1) , T (x1)〉+ 〈T (x2) , T (x2)〉) inequality

is satisfy for every x1, x2 ∈ X,. If x = x1 = x2, we have

〈x, x〉 = 〈x1, x2〉

≤ 1

2
(〈T (x1) , T (x1)〉+ 〈T (x2) , T (x2)〉)

= 〈T (x) , T (x)〉 .

So, we obtain ‖x‖ ≤ ‖Tx‖.

Remark 2. If X and Y is a linear space in the above Theorem, then, since T is a
linear operator, we have

‖x‖ ≤ ‖Tx‖ ⇔ 〈x1, x2〉 = 〈T (x1) , T (x2)〉

for every x, x1, x2 ∈ X.
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