BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 8 Issue 1(2016), Pages 1-5.

ON ABSOLUTE FACTORABLE MATRIX SUMMABILITY METHODS

(COMMUNICATED BY HUSEYIN BOR)

MEHMET ALI SARIGÖL

ABSTRACT. In this paper we give necessary and sufficient conditions for $|C, 0|_k \Rightarrow |A_f|_s$ and $|A_f|_k \Rightarrow |C, 0|_s$ for the case $1 < k \leq s < \infty$, where $|A_f|_k$ is absolute factorable summability. So we obtain some known results.

1. Introduction

Let $\sum x_v$ be a given infinite series with partial sums (s_n) . By σ_n^{α} we denote *n*.th Cesàro mean of order α , $\alpha > -1$, of the sequence (s_n) . The series $\sum x_v$ is said to be absolutely summable (C, α) with index k, or simply summable $|C, \alpha|_k$, $k \ge 1$, if (see [6])

$$\sum_{n=1}^{\infty} n^{k-1} \left| \sigma_n^{\alpha} - \sigma_{n-1}^{\alpha} \right|^k < \infty.$$
(1.1)

Since $\sigma_n^0 = s_n$, the summability $|C, 0|_k$ is equivalent to

$$\sum_{n=1}^{\infty} n^{k-1} |x_n|^k < \infty.$$
 (1.2)

Let (p_n) be a sequence of positive real constants with $P_n = p_0 + p_1 + ... + p_n \to \infty$ as $n \to \infty$. The sequence-to-sequence transformation

$$t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (t_n) of the (R, p_n) Riesz mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series Σx_v is then said to be summable $|R, p_n|_k, k \ge 1$, if (see [13])

$$\sum_{n=1}^{\infty} n^{k-1} \left| t_n - t_{n-1} \right|^k < \infty.$$
(1.3)

²⁰⁰⁰ Mathematics Subject Classification. 40C05,40D25,40F05, 46A45.

Key words and phrases. Absolute Riesz summability; matrix transformation; sequence space. ©2016 Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted January 10, 2016. Published January 25, 2016.

Now, by $|R_p|_k$ let us denote the set of series summable by the summability method $|R, p_n|_k$. Then it is easily seen that

$$|R_p|_k = \left\{ a = (a_n) : \sum_{n=1}^{\infty} n^{k-1} \left| \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} x_v \right|^k < \infty \right\}, \ k \ge 1,$$

and so it means that the series Σx_v is summable $|R, p_n|_k$ if and only if the sequence $x = (x_v) \in |R_p|_k$.

Here, we extend the summability $|R, p_n|_k$ with factorable matrix as follows: The series Σx_v is said to be summable $|A_f|_k$, $k \ge 1$, if

$$\sum_{n=1}^{\infty} n^{k-1} \left| \widehat{a}_n \sum_{v=1}^n a_v x_v \right|^k < \infty.$$

$$(1.4)$$

A factorable matrix $A_f = (a_{nv})$ is one in which each entry

$$a_{nv} = \begin{cases} \widehat{a}_n a_v, \ 0 \le v \le n\\ 0, \quad v > n \end{cases}$$
(1.5)

where (\hat{a}_n) and (a_n) are any sequences of real numbers. Note that it is possible to get from it some known notations. For example, if one takes $\hat{a}_n = p_n/P_nP_{n-1}$, $a_v = P_{v-1}$ and $\hat{a}_n = 1/n(n+1)$, $a_v = v$, then $|A_f|_k$ are reduced to the summabilities $|R, p_n|_k$ and $|C, 1|_k$, respectively.

If A and B are methods of summability, B is said to include A (written $A \Rightarrow B$) if every series summable by the method A is also summable by the method B. A and B said to be equivalent (written $A \Leftrightarrow B$) if each methods includes the other.

Problems on inclusion dealing absolute Cesàro and absolute weighted mean summabilities have been examined by many authors ([2-14]). On this topic, Bor [2] proved sufficient conditions for equivalence of the summabilities $|R, p_n|_k$ and $|C, 0|_k$ as follows.

Theorem 1.1. Let k > 1 and

$$\sum_{n=v}^{\infty} \frac{n^{k-1} p_n^k}{P_n^k P_{n-1}} = O\left(\frac{v^{k-1} p_{v-1}^k}{P_{v-1}^k}\right).$$
(1.6)

If

$$P_{n+1} \ge dP_n. \tag{1.7}$$

where d is a constant such that d > 1, then $|R, p_n|_k \Leftrightarrow |C, 0|_k$.

It has been more recently shown by Sarıgöl [10] that the condition (1.6) is omitted, and the condition (1.7) is not only sufficient but also necessary for Theorem 1.1 to hold, and also been completed in the following way.

Theorem 1.2. Let $1 < k \le s < \infty$. Then, $|R, p_n|_k \Rightarrow |C, 0|_s$ if and only if

$$\left(\sum_{v=m-1}^{m} \frac{1}{v} \left(\frac{P_v P_{v-1}}{p_v}\right)^{k^*}\right)^{1/k^*} \left(\sum_{n=m}^{m+1} \frac{n^{s-1}}{P_{n-1}^s}\right)^{1/s} = O(1),$$
(1.8)

where k^{*} denotes the conjugate index of k, i.e., $\frac{1}{k} + \frac{1}{k^*} = 1$

Theorem 1.3. Let $1 < k \le s < \infty$. Then, $|C, 0|_k \Rightarrow |R, p_n|_s$ if and only if

$$\left(\sum_{m=1}^{v} \frac{P_{m-1}^{k^*}}{m}\right)^{1/k^*} \left(\sum_{n=v}^{\infty} \left(\frac{n^{1-1/s}p_n}{P_n P_{n-1}}\right)^s\right)^{1/s} = O(1), \tag{1.9}$$

where k^* denotes the conjugate index of k.

Corollary 1.4. Let $k \ge 1$. Then, $|C,0|_k \Leftrightarrow |R,p_n|_k$ if and only if condition (1.6) is satisfied.

2. Main Results

The aim of this paper is to generalize the above theorems for summability $|A_f|_k$. Now we prove the following theorems.

Theorem 2.1. Let $1 < k \leq s < \infty$ and A be a factorable matrix given by (1.5) such that $\hat{a}_n . a_n \neq 0$ for all n. Then, $|A_f|_k \Rightarrow |C, 0|_s$ if and only if

$$\left(\sum_{v=m-1}^{m} \frac{1}{v \left| \hat{a}_{v} \right|^{k^{*}}} \right)^{1/k^{*}} \left(\sum_{n=m}^{m+1} \frac{n^{s-1}}{\left| a_{n} \right|^{s}} \right)^{1/s} = O(1),$$
(2.1)

where k^{*} denotes the conjugate index of k, i.e., $\frac{1}{k} + \frac{1}{k^*} = 1$

Theorem 2.2. Let $1 < k \le s < \infty$ and A be a factorable matrix given by (1.5). Then, $|C, 0|_k \Rightarrow |A_f|_s$ if and only if

$$\left(\sum_{v=1}^{m} \frac{1}{v} |a_v|^{k^*}\right)^{1/k^*} \left(\sum_{n=m}^{\infty} n^{s-1} |\widehat{a}_n|^s\right)^{1/s} = O(1), \tag{2.2}$$

where k^* denotes the conjugate index of k.

Now Theorem 2.1 and Theorem 2.2 immediately give the following result.

Corollary 2.3. Let $1 < k < \infty$ and A be a factorable matrix given by (1.5) such that $\hat{a}_n . a_n \neq 0$ for all n. Then, $|C, 0|_k \Leftrightarrow |A_f|_s$ if and only if the conditions (2.1) and (2.2) with k = s are satisfied.

Before proving theorems we recall a result of Bennett [1] that $T:\ell^k\to\ell^s$ if and only if

$$\left(\sum_{v=1}^{m} c_v^{k^*}\right)^{1/k^*} \left(\sum_{n=m}^{\infty} b_n^s\right)^{1/s} = O(1),$$
(2.3)

where $T = (t_{nv}) = b_n c_v$ is a factorable matrix with nonegative entrice $b_n c_v$.

Proof of Theorem 2.1. Let $x_n^* = n^{1/s^*} x_n$ and $A_n^*(x) = n^{1/k^*} A_n(x)$, where

$$A_n(x) = \hat{a}_n \sum_{v=1}^n a_v x_v, \ n \ge 1.$$
(2.4)

Then, Σx_n is summable $|A_f|_k$ and $|C, 0|_s$ iff $A^*(x) \in l_k$ and $x^* \in l_s$, respectively. On the other hand, it can be written from (2.4) that

$$x_{n} = \frac{1}{a_{n}} \left(\frac{A_{n}(x)}{\hat{a}_{n}} - \frac{A_{n-1}(x)}{\hat{a}_{n-1}} \right)$$
(2.5)

and so

$$x_n^* = \frac{n^{1/s^*}}{a_n} \left(\frac{n^{-1/k^*} A_n^*(x)}{\widehat{a}_n} - \frac{(n-1)^{-1/k^*} A_{n-1}^*(x)}{\widehat{a}_{n-1}} \right)$$

which gives us

$$x_n^* = \sum_{v=1}^\infty t_{nv} A_v^*(x),$$

where

$$t_{nv} = \begin{cases} \frac{n^{1/s^*}}{a_n} \left(-\frac{(n-1)^{-1/k^*}}{\widehat{a}_{n-1}} \right), & v = n-1 \\ \frac{n^{1/s^*}}{a_n} \left(\frac{n^{-1/k^*}}{\widehat{a}_n} \right), & v = n. \\ 0, & v \neq n-1, n \end{cases}$$
(2.6)

Then, $|A_f|_k \Rightarrow |C, 0|_s$ if and only if

$$\sum_{n=1}^{\infty} \left|A_n^*(x)\right|^k < \infty \Longrightarrow \sum_{n=1}^{\infty} \left|x_n^*\right|^s < \infty, \ i.e., \ T: \ell^k \to \ell^s,$$

where T is the matrix whose entries are defined by (2.6). Therefore, applying (2.3) to the matrix T, we have that $|A_f|_k \Rightarrow |C,0|_s$ iff the condition (2.1) holds, which completes the proof.

Proof of Theorem 2.2. Let $n \ge 1$ and $x_n^* = n^{1/k^*} x_n$ and $A_n^*(x) = n^{1/s^*} A_n(x)$, where $A_n(x)$ is given by (2.4). Then,

$$A_n^*(x) = n^{1/s^*} \widehat{a}_n \sum_{v=1}^n v^{-1/k^*} a_v x_v^* = \sum_{v=1}^n h_{nv} x_v^*$$

where

$$h_{nv} = \begin{cases} n^{1/s^*} \widehat{a}_n v^{-1/k^*} a_v, & 1 \le v \le n \\ 0, & v > n. \end{cases}$$

Since the reminder of the proof is similar to the above, so it can be omitted.

References

- [1] G. Bennett, Some elemantery inequalities, Quart. J. Math. Oxford 38 (1987), 401-425.
- [2] H. Bor, H., A new result on the high indices theorem, Analysis 29 (2009), 403-405.
- [3] H. Bor and B. Kuttner, On the necessary conditions for absolute weighted arithmetic mean summability factors, Acta. Math. Hungar. 54 (1989), 57-61.
- [4] L. S. Bosanquet, Review of [5], Math. Reviews, MR0034861 (11,654b) (1950).
- [5] G. Sunouchi, Notes on Fourier Analysis, 18, absolute summability of a series with constant terms, Tohoku Math. J., 1(1949). 57-65.
- [6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
- [7] L. McFadden, Absolute Nörlund summability, Duke Math. J., 9 (1942), 168-207.
- [8] S. M. Mazhar, On the absolute summability factors of infinite series, Tohoku Math. J.,23 (1971), 433-451.
- [9] M. R. Mehdi, Summability factors for generalized absolute summability I, Proc. London Math. Soc.(3), 10 (1960), 180-199.
- [10] M. A. Sarıgöl, Characterization of summability methods with high indices, Math. Slovaca 63 (2013), No. 5, 1-6.
- [11] M. A. Sarıgöl, On inclusion relations for absolute weighted mean summability, J. Math. Anal. Appl., 181 (3), (1994), 762-767.
- [12] C. Orhan and M. A. Sarıgöl, On absolute weighted mean summability, Rocky Moun. J. Math. 23 (3), (1993), 1091-1097.
- [13] M. A. Sarıgöl, On absolute weighted mean summability methods, Proc. Amer. Math. Soc., 115 (1), (1992), 157-160.
- [14] M. A. Sarıgöl, Necessary and sufficient conditions for the equivalence of the summability methods $|\overline{N}, p_n|_k$ and $|C, 1|_k$, Indian J. Pure Appl. Math. 22(6), (1991), 483-489.

4

Mehmet Ali Sarigöl, Department of Mathematics, Pamukkale University, Denizli 20070, Turkey

 $E\text{-}mail\ address: \texttt{msarigol@pau.edu.tr}$