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HYPERGEOMETRIC REPRESENTATION FOR

BASKAKOV-DURRMEYER-STANCU TYPE OPERATORS

(COMMUNICATED BY HÜSEYIN BOR)

VISHNU NARAYAN MISHRA, HUZOOR H. KHAN, KEJAL KHATRI AND LAKSHMI
NARAYAN MISHRA

Abstract. In the present paper, we introduce and study the mixed summation-
integral type operators having Baskakov and Beta basis functions in summa-
tion and integration, respectively. First, we estimate moments of these op-
erators using hypergeometric series. Next, we obtain an error estimation in
simultaneous approximation for Baskakov-Durrmeyer-Stancu operators.

1. Introduction

Khan [4] and Mishra [5] have proved some results dealing with the degree of ap-
proximation of functions in Lp- spaces using different types of operators. Baskakov-
Durrmeyer operators were first considered by Sahai-Prasad [8] in 1985 . Sinha et
al. [9] improved and corrected the results of [8]. In 2005, Finta [1], introduced a
new type of Baskakov-Durrmeyer operator by taking the weight function of Beta
operators on L[0,∞) as

Dn(f, x) =
∞
∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)f(t)dt + pn,0(x)f(0), (1)

where pn,k(x) =
(n)k
k!

xk

(1+x)n+k and bn,k(t) =
(n+1)(n+2)k

k!
tk

(1+t)n+k+2 .

Wafi and Khatoon [11] have proved inverse theorem for generalized Baskakov op-
erators. Recently, Gupta and Yadav [3] introduced the Baskakov -Beta- Stancu
operator and invetigated like asymptotic formula, moments of these operators us-
ing hypergeometric series and errors estimation in simultaneous approximation. we
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write the operators (1) as

Dn(f, x) = (n+ 1)

∞
∑

k=1

(n)k
k!

xk

(1 + x)n+k

∫ ∞

0

(n+ 2)k
k!

tk

(1 + t)n+k+2
f(t)dt+

f(0)

(1 + x)n

= (n+ 1)

∫ ∞

0

f(t)(1 + x)2

[(1 + x)(1 + t)]n+2

∞
∑

k=1

(n)k(n+ 2)k
(k!)2

(xt)k

[(1 + x)(1 + t)]k
dt+

f(0)

(1 + x)n
.

By hypergeometric series 2F1(a, b; c;x) =
∑∞

k=0
(a)k(b)k
(c)kk!

xk and the Pochhammer

symbol (n)k is
(n)k = n(n + 1)(n + 2)(n + 3)....(n + k − 1), using the equality (1)k = k!, we can
write

Dn(f, x) = (n+ 1)

∫ ∞

0

f(t)(1 + x)2

[(1 + x)(1 + t)]n+2

[

2F1

(

n, n+ 2; 1;
xt

(1 + x)(1 + t)

)

− 1

]

dt+
f(0)

(1 + x)n
.

Now using 2F1(a, b; c;x) = 2F1(b, a; c;x) and applying Pfaff- Kummer transforma-
tion

2F1(a, b; c;x) = (1− x)−a
2F1

(

a, c− b; c;
x

x− 1

)

we have

Dn(f, x) = (n+1)

∫ ∞

0

f(t)(1 + x)2









2F1

(

n+ 2, 1− n; 1; −xt
1+x+t

)

(1 + x+ t)n+2
−

1

[(1 + x)(1 + t)]n+2









dt+
f(0)

(1 + x)n
.

(2)
This is the form of the operators (1) in terms of hypergeometric functions.
Verma et al. [10] considered Baskakov -Durrmeyer- Stancu operators and studied
some approximation properties of these operators. Very recently, Mishra and Patel
[6] introduced a simple Stancu generalization of q-analogue of well known Dur-
rmeyer operators. We first estimate moments of q− Durrmeyer-Stancu operators.
They also established the rate of convergence as well as Voronovskaja type asymp-
totic formula for q− Durrmeyer-Stancu operators. Here, we introduce Baskakov
-Durrmeyer- Stancu operators in terms of hypergeometric functions, for 0 ≤ α ≤ β
as

Dn,α,β(f, x) = (n+ 1)

∫ ∞

0

f

(

nt+ α

n+ β

)

(1 + x)2
[ 2F1

(

n+ 2, 1− n; 1; −xt
1+x+t

)

(1 + x+ t)n+2
−

1

[(1 + x)(1 + t)]n+2

]

dt

+
f(0)

(1 + x)n
. (3)

For α = β = 0 the operators (3) reduces to the operators (1).
we know that
∞
∑

k=0

pn,k(x) = 1,

∫ ∞

0

pn,k(x)dx =
1

n− 1
,

∞
∑

k=1

bn,k(t) = n+ 1,

∫ ∞

0

bn,k(t)dt = 1.

We take

Cν [0,∞) = {f ∈ C[0,∞) : f(t) = O(t)ν , ν > 0}.
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The operators Dn,α,β(f, x) are well defined for f ∈ C[0,∞). The behavior of these
operators is very similar to the operators recently introduced in [7] by Mishra et al.
In the present note, first, we estimate moments of Baskakov -Durrmeyer- Stancu
operators with the help of hypergeometric series. Next, we give an error estimation
in simultaneous approximation for the operators (3)

2. Auxiliary results

In the sequel we shall need several lemmas.

Lemma 2.1. For n > 0 and s > −1, we have

Dn(t
s, x) =

Γ(n− s+ 1)Γ(s+ 1)

Γ(n+ 1)

[

(1 + x)s2F1

(

1− n,−s; 1;
x

1 + x

)

− (1 + x)−n

]

.

(4)
Moreover,

Dn(t
s, x) =

(n+ s− 1)!(n− s)!

n!(n− 1)!
xs +

s(s− 1)(n+ s− 2)!(n− s)!

n!(n− 1)!
xs−1 +O(n−2).

(5)

Proof. Taking f(t) = ts, t = (1 + x)u and using Pfaff-Kummer transformation the
right-hand side of (2), we get

Dn(t
s, x) = (n+ 1)

∫ ∞

0

(1 + x)s+3us

[(1 + x)(1 + u)]n+2

∞
∑

k=0

(1− n)k(n+ 2)k
(k!)2

(−x(1 + x)u)k

[(1 + x)(1 + u)]k
du

+
Γ(n− s+ 1)Γ(s+ 1)

Γ(n+ 1)
(1 + x)−n = Q1 +Q2(say).

Q1 = (n+ 1)

∞
∑

k=0

(n+ 2)k(1− n)k
(k!)2

(−x)k(1 + x)s−n+1

∫ ∞

0

us+k

(1 + u)n+k+2
du

= (n+ 1)
∞
∑

k=0

(n+ 2)k(1− n)k
(k!)2

(−x)k(1 + x)s−n+1B(s+ k + 1, n− s+ 1)

= (n+ 1)

∞
∑

k=0

(n+ 2)k(1− n)k
(k!)2

(−x)k(1 + x)s−n+1Γ(s+ k + 1)Γ(n− s+ 1)

Γ(n+ k + 2)
.

Using Γ(n+ k + 2) = Γ(n+ 2)(n+ 2)k, we have

Q1 = (n+ 1)

∞
∑

k=0

(n+ 2)k(1− n)k
(k!)2

(−x)k(1 + x)s−n+1Γ(s+ 1)(s+ 1)kΓ(n− s+ 1)

Γ(n+ 2)(n+ 2)k

= (1 + x)s−n+1 Γ(s+ 1)Γ(n− s+ 1)

Γ(n+ 1)

∞
∑

k=0

(s+ 1)k(1− n)k
(k!)2

(−x)k

= (1 + x)s−n+1 Γ(s+ 1)Γ(n− s+ 1)

Γ(n+ 1)
2F1(1 − n, 1 + s; 1;−x).

Using 2F1(a, b; c;x) = (1− x)−a
2F1

(

a, c− b; c; x
x−1

)

, we have

Q1 =
Γ(n− s+ 1)Γ(s+ 1)

Γ(n+ 1)
(1 + x)s2F1

(

1− n,−s; 1;
x

1 + x

)

.
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Combining Q1 and Q2, we get

Dn(t
s, x) =

Γ(n− s+ 1)Γ(s+ 1)

Γ(n+ 1)

[

(1 + x)s2F1

(

1− n,−s; 1;
x

1 + x

)

− (1 + x)−n

]

.

The other consequence (5) follows from the above equation by writting the expan-
sion of hypergeometric series. �

Lemma 2.2. For 0 ≤ α ≤ β and m > 0, we have

Dn,α,β(t
s, x) = xs ns

(n+ β)s
(n+ s− 1)!(n− s)!

n!(n− 1)!

+ xs−1

{

s(s− 1)
ns

(n+ β)s
(n+ s− 2)!(n− s)!

n!(n− 1)!
+ sα

ns−1

(n+ β)s
(n+ s− 2)!(n− s+ 1)!

n!(n− 1)!

}

+ xs−2

{

s(s− 1)(s− 2)α
ns−1

(n+ β)s
(n+ s− 3)!(n− s+ 1)!

n!(n− 1)!

+
s(s− 1)

2
α2 ns−2

(n+ β)s
(n+ s− 3)!(n− s+ 2)!

n!(n− 1)!

}

+O(n−m).

Proof. Using binomial theorem, the relation between operators (2) and (3) can be
defined as

Dn,α,β(t
s, x) =

∞
∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)

(

nt+ α

n+ β

)s

dt+ (1 + x)−n

(

α

n+ β

)s

=

∞
∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)

∞
∑

j=0

(

s

j

)

(nt)jαs−j

(n+ β)s
dt+ (1 + x)−n

(

α

n+ β

)s

=
∞
∑

j=0

(

s

j

)

njαs−j

(n+ β)s

{

Dn(t
j , x)− (1 + x)−n0

}

+ (1 + x)−n

(

α

n+ β

)s

.

Using (5), we get Lemma (2.2). �

Lemma 2.3. [2] For m ∈ N
⋃

{0}, if

Un,m(x) =

∞
∑

k=0

pn,k(x)

(

k

n
− x

)m

,

then Un,0(x) = 1, Un,1(x) = 0 and we have the recurrence relation:

nUn,m+1(x) = x(1 + x)
[

U ′
n,m(x) +mUn,m−1(x)

]

.

Consequently, Un,m(x) = O
(

n−[(m+1)/2]
)

, where [m] is integral part of m.

Lemma 2.4. [10] For m ∈ N
⋃

{0}, if

µn,m(x) = Dn,α,β((t− x)m, x)

=
∞
∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)

(

nt+ α

n+ β
− x

)m

dt+ pn,0(x)

(

α

n+ β
− x

)m

then

µn,0(x) = 1, µn,1(x) =
α− βx

n+ β
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and for n>m we have recurrence relation:

(n−m)

(

n+ β

n

)

µn,m+1(x) = x(1 + x)
[

µ′
n,m(x) +mµn,m−1(x)

]

+

[

(m+ nx) +

(

n+ β

n

)(

α

n+ β
− x

)

(n− 2m)

]

µn,m(x)

−

(

α

n+ β
− x

)[(

α

n+ β
− x

)(

n+ β

n

)

− 1

]

mµn,m−1(x).

From the recurrence relation, it easily verified that for all x ∈ [0,∞), we have

µn,m(x) = O(n−[(m+1)/2]).

Lemma 2.5. [2] There exist the polynomials qi,j,s(x) on [0,∞), independent of n
and k such that

xs(1 + x)s
ds

dxs
pn,k(x) =

∑

2i+j≤s

i,j≥0

ni(k − nx)jqi,j,s(x)pn,k(x).

3. Main result

In this section, we give an estimate of the degree of approximation byD
(s)
n,α,β(f(t), x)

for smooth functions.

Theorem 3.1. Let f ∈ Cν [0,∞) for some ν > 0, m > 0 and s ≤ q ≤ s+2. If f (q)

exists and is continuous on (a− η, b+ η) ⊂ (0,∞), η > 0, then for sufficiently large

n

||D
(s)
n,α,β(f, x)−f (s)(x)||C[a,b] ≤ C1n

−1

q
∑

i=s

||f i||C[a,b]+C2n
1/2ω(f (q), n1/2)+O(n−m),

(6)
where C1, C2 are constants independent of f and n, ω(f, δ) is the modulus of

continuity of f on (a− η, b + η) and ||.||C[a,b] denotes the sup-norm on [a, b].

Proof. By the Taylor’s, expansion, we have

f(t) =

q
∑

i=0

f (i)(x)

i!
(t− x)i +

f (q)(x)− f (q)(ξ)

q!
(t− x)qχ(t) + h(t, x)(1 − χ(t))

where ξ lies between t and x, and χ(t) is the characteristic function on interval
(a− η, b+ η).
For t ∈ (a− η, b+ η) and x ∈ [a, b], we have

f(t) =

q
∑

i=0

f (i)(x)

i!
(t− x)i +

f (q)(x) − f (q)(ξ)

q!
(t− ξ)q.

For t ∈ [0,∞)\(a− η, b+ η) and x ∈ [a, b], we define

h(t, x) = f(t)−

q
∑

i=0

f (i)(x)

i!
(t− x)i.
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Now,

D
(s)
n,α,β(f, x)− f (s)(x) =

{ q
∑

i=0

f (i)(x)

i!
D

(s)
n,α,β((t− x)i, x)− f (s)(x)

}

+D
(s)
n,α,β

(

f (q)(x) − f (q)(ξ)

q!

(t− x)qχ(t), x

)

+D
(s)
n,α,β(h(t, x)(1 − χ(t)), x) = F1 + F2 + F3.

Using Lemma 2.2, we get

F1 =

q
∑

i=0

f (i)(x)

i!

i
∑

j=0

(

i

j

)

(−x)i−j ds

dxs

[

xj nj

(n+ β)j
(n+ j − 1)!(n− j)!

n!(n− 1)!

+ xj−1

(

j(j − 1)
nj

(n+ β)j
(n+ j − 2)!(n− j)!

n!(n− 1)!
+ jα

nj−1

(n+ β)j
(n+ j − 2)!(n− j + 1)!

n!(n− 1)!

)

+ xj−2

(

j(j − 1)(j − 2)α
nj−1

(n+ β)j
(n+ j − 3)!(n− j + 1)!

n!(n− 1)!

+
j(j − 1)

2
α2 nj−2

(n+ β)j
(n+ j − 3)!(n− j + 2)!

n!(n− 1)!

)

+O(n−m)

]

− f (s)(x).

Hence

||F1||C[a,b] ≤ C1n
−1

q
∑

i=s

||f i||C[a,b] +O(n−m), uniformly on [a, b].

Next, we estimate F2 as

|F2| ≤

∞
∑

k=1

|p
(s)
n,k(x)|

∫ ∞

0

bn,k(t)

{∣

∣

∣

∣

f (q)(x)− f (q)(ξ)

q!

∣

∣

∣

∣

∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q

χ(t)

}

dt

+
(n+ s− 1)!

(n− 1)!
(1 + x)−n−s

∣

∣

∣

∣

α

n+ β
− x

∣

∣

∣

∣

q

χ(t)

≤
ω(f (s), δ)

q!

[ ∞
∑

k=1

|p
(s)
n,k(x)|

∫ ∞

0

bn,k(t)









1 +

∣

∣

∣

∣

nt+α
n+β − x

∣

∣

∣

∣

δ









∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q

dt

+
(n+ s− 1)!

(n− 1)!
(1 + x)−n−s









1 +

∣

∣

∣

∣

α
n+β − x

∣

∣

∣

∣

δ









∣

∣

∣

∣

α

n+ β
− x

∣

∣

∣

∣

q]

≤
ω(f (s), δ)

q!

[ ∞
∑

k=1

|p
(s)
n,k(x)|

∫ ∞

0

bn,k(t)

( ∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q

+ δ−1

∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q+1)

dt

+
(n+ s− 1)!

(n− 1)!
(1 + x)−n−s

( ∣

∣

∣

∣

α

n+ β
− x

∣

∣

∣

∣

q

+ δ−1

∣

∣

∣

∣

α

n+ β
− x

∣

∣

∣

∣

q+1)]
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Now, on application of Schwarz inequality for integration and then for summation,
we get

∞
∑

k=1

pn,k(x)|k − nx|j
∫ ∞

0

bn,k(t)

∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q

≤

∞
∑

k=1

pn,k(x)|k − nx|j
(∫ ∞

0

bn,k(t)dt

)
1
2

(∫ ∞

0

bn,k(t)

(

nt+ α

n+ β
− x

)2q

dt

)
1
2

≤

( ∞
∑

k=1

pn,k(x)(k − nx)2j
)

1
2
( ∞
∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)

(

nt+ α

n+ β
− x

)2s

dt

)
1
2

.

Using Lemma 2.3, we get

∞
∑

k=1

pn,k(x)(k − nx)2j = n2j

{ ∞
∑

k=0

pn,k(x)(k/n− x)2j)− (1 + x)−n(−x)2j
}

= n2j

{

O(n−j) +O(n−r)

}

(for any r > 0).

= O(nj). (7)

Similarly, using Lemma 2.4, we get

∞
∑

k=1

pn,k(x)

∫ ∞

0

bn,k(t)

(

nt+ α

n+ β
− x

)2q

dt = O(nq)− (1 + x)−n(−x)2q

= O(n−q) +O(n−r) (for any r > 0).

= O(n−s). (8)

Hence
∞
∑

k=1

pn,k(x)|k − nx|j
∫ ∞

0

bn,k(t)

∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q

= O(nj/2)O(n−q/2) = O(n(j−q)/2), uniformly on [a, b]. (9)

Therefore, by Lemma 2.5 and (9), we get

∞
∑

k=1

|p
(s)
n,k(x)|

∫ ∞

0

bn,k(t)

∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q

≤

∞
∑

k=1

∑

2i+j≤s

i,j≥0

niqi,j,s(x)

xs(1 + x)s
pn,k(x)|k − nx|j

∫ ∞

0

bn,k(t)

(

nt+ α

n+ β
− x

)q

dt

≤ K
∑

2i+j≤s

i,j≥0

ni

(

∞
∑

k=1

pn,k(x)|k − nx|j
∫ ∞

0

bn,k(t)

∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

q

dt

)

= K
∑

2i+j≤s

i,j≥0

niO(n(j−q)/2) = O(n(s−q)/2), uniformly on [a, b], (10)
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where K = sup 2i+j≤s

i,j≥0

supx∈[a,b]
qi,j,s(x)
xs(1+x)s . Choosing δ = n−1/2 and making use of

(10), we get for any m > 0,

||F2||C[a,b] ≤
ω(f (q), n−1/2)

q!
[O(n(s−q)/2) + n1/2O(n(s−q−1)/2) +O(n−m)] ≤ C2(n

−(q−s)/2)ω(f (q), n−1/2).

For t ∈ [0,∞)\(a− η, b+ η), we can choose δ such that |t− x| ≥ δ for all x ∈ [a, b].
Thus by Lemma 2.5, we get

|F3| ≤
∑

2i+j≤s

i,j≥0

niqi,j,s(x)

xs(1 + x)s

∞
∑

k=1

pn,k(x)|k − nx|j
∫

|t−x|≥δ

bn,k(t)|h(t, x)|dt

+
(n+ s− 1)!

(n− 1)!
(1 + x)−n−s

∣

∣

∣

∣

h

(

α

n+ β
, x

)∣

∣

∣

∣

.

We can find a constant M1 such that

|h(t, x)| ≤ M1

∣

∣

∣

∣

nt+ α

n+ β
− x

∣

∣

∣

∣

β

for |t− x| ≥ δ,

where β ≥ (ν, q). Hence applying Schwarz inequality, (7) and (8), it is easy to see
that F3 = O(n−r) for any r > 0 uniformly on [a, b]. Combining the estimates of
F1, F2 and F3, the required result follows. �
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