BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 5 Issue 1 (2013), Pages 53-64

REPRESENTATIONS FOR THE GENERALIZED DRAZIN INVERSE IN A BANACH ALGEBRA

(COMMUNICATED BY FUAD KITTANEH)

J. BENÍTEZ¹, X LIU² AND Y. QIN²

ABSTRACT. In this paper, we investigate additive properties for the generalized Drazin inverse in a Banach algebra \mathscr{A} . We give some representations for the generalized Drazin inverse of a + b, where a and b are elements of \mathscr{A} under some new conditions, extending some known results.

1. INTRODUCTION

The Drazin inverse has important applications in matrix theory and fields such as statistics, probability, linear systems theory, differential and difference equations, Markov chains, and control theory ([1, 2, 11]). In [9], Koliha extended the Drazin invertibility in the setting of Banach algebras with applications to bounded linear operators on a Banach space. In this paper, Koliha was able to deduce a formula for the generalized Drazin inverse of a + b when ab = ba = 0. The general question of how to express the generalized Drazin inverse of a + b as a function of a, b, and the generalized Drazin inverses of a and b without side conditions, is very difficult and remains open. R.E. Hartwig, G.R. Wang, and Y. Wei studied in [8] the Drazin inverse of a sum of two matrices A and B when AB = 0. In the papers [3, 4, 5, 7], some new conditions under which the generalized Drazin inverse of the sum a + bin a Banach algebra is explicitly expressed in terms of a, b, and the generalized Drazin inverses of a and b.

In this paper we introduce some new conditions and we extend some known expressions for the generalized Drazin inverse of a+b, where a and b are generalized Drazin invertible in a unital Banach algebra.

Throughout this paper we will denote by \mathscr{A} a unital Banach algebra with unity 1. Let \mathscr{A}^{-1} and $\mathscr{A}^{\mathsf{qnil}}$ denote the sets of all invertible and quasinilpotent elements in \mathscr{A} , respectively. Explicitly,

$$\begin{aligned} \mathscr{A}^{-1} &= \{ a \in \mathscr{A} : \exists \ x \in \mathscr{A} : ax = xa = 1 \}, \\ \mathscr{A}^{\mathsf{qnil}} &= \{ a \in \mathscr{A} : \lim_{n \to +\infty} \|a^n\|^{1/n} = 0 \}. \end{aligned}$$

Keywords and phrases. generalized Drazin inverse, Banach algebra.

⁰2000 Mathematics Subject Classification: 15A09, 46H05.

^{© 2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted Mar 25 2011. Published February 16, 2013.

If \mathscr{B} is a subalgebra of the unital algebra \mathscr{A} , for an element $b \in \mathscr{B}^{-1}$, we shall denote by $[b^{-1}]_{\mathscr{B}}$ the inverse of b in \mathscr{B} . Let us observe that in general $\mathscr{B}^{-1} \not\subset \mathscr{A}^{-1}$ (for example, if $p \in \mathscr{A}$ is a nontrivial idempotent and \mathscr{B} is the subalgebra $p \mathscr{A} p$, then the unity of \mathscr{B} is p, and therefore, $p \in \mathscr{B}^{-1} \setminus \mathscr{A}^{-1}$).

Let $a \in \mathscr{A}$, if there exists $b \in \mathscr{A}$ such that

$$bab = b,$$
 $ab = ba,$ $a(1-ab)$ is nilpotent, (1.1)

then b is the Drazin inverse of a, denoted by a^{D} and it is unique. If the last condition in (1.1) is replaced by a(1-ab) is quasinilpotent, then b is the generalized Drazin inverse, denoted by a^{d} and is also unique. Evidently aa^{d} is an idempotent, and it is customary to denote $a^{\pi} = 1 - aa^{\mathsf{d}}$. We shall denote

$$\mathscr{A}^{\mathsf{d}} = \{ a \in \mathscr{A} : \exists a^{\mathsf{d}} \}.$$

In particular, if a(1-ab) = 0 then b is called the group inverse of a. It was proved in [9, Lemma 2.4] that a^{d} exists if and only if and only if exists an idempotent $q \in \mathscr{A}$ such that aq = qa, aq is quasinilpotent, and a+q is invertible. The following simple remark will be useful.

Remark 1.1. If the subalgebra $\mathscr{B} \subset \mathscr{A}$ has unity, then $\mathscr{B}^{-1} \subset \mathscr{A}^{\mathsf{d}}$ and if $b \in \mathscr{B}^{-1}$, then $b^{\mathsf{d}} = [b^{-1}]_{\mathscr{B}}$. In fact, let e be the unity of \mathscr{B} , since $b[b^{-1}]_{\mathscr{B}} = [b^{-1}]_{\mathscr{B}}b = e$, it is easy to see $b[b^{-1}]_{\mathscr{B}}b = b$, $[b^{-1}]_{\mathscr{B}}b[b^{-1}]_{\mathscr{B}} = [b^{-1}]_{\mathscr{B}}$, and $[b^{-1}]_{\mathscr{B}}b = b[b^{-1}]_{\mathscr{B}}$.

Following [4], we say that $\mathscr{P} = \{p_1, p_2, \ldots, p_n\}$ is a total system of idempotents in \mathscr{A} if $p_i^2 = p_i$ for all $i, p_i p_j = 0$ if $i \neq j$, and $p_1 + \cdots + p_n = 1$. Given a total system \mathscr{P} of idempotents in \mathscr{A} , we consider the set $\mathscr{M}_n(\mathscr{A}, \mathscr{P})$ consisting of all matrices $A = [a_{ij}]_{i,j=1}^n$ with elements in \mathscr{A} such that $a_{ij} \in p_i \mathscr{A} p_j$ for all $i, j \in \{1, \ldots, n\}$. Let us recall that $p_i \mathscr{A} p_i$ is a subalgebra of \mathscr{A} with unity p_i . In [4, Lemma 2.1] it was proved that $\phi : \mathscr{A} \to \mathscr{M}_n(\mathscr{A}, \mathscr{P})$ given by

$$\phi(x) = \begin{bmatrix} p_1 x p_1 & p_1 x p_2 & \cdots & p_1 x p_n \\ p_2 x p_1 & p_2 x p_2 & \cdots & p_2 x p_n \\ \vdots & \vdots & \ddots & \vdots \\ p_n x p_1 & p_n x p_2 & \cdots & p_n x p_n \end{bmatrix}_{\mathcal{A}}$$

is an isometric algebra isomorphism. In the sequel, we shall identify $x = \phi(x)$ for $x \in \mathscr{A}$. Another useful (although trivial) identity is

$$x = \sum_{i,j=1}^{n} p_i x p_j \qquad \forall \ x \in \mathscr{A}.$$

If $a \in \mathscr{A}$ is generalized Drazin invertible, then we have the following matrix representations:

$$a = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}}, \qquad a^{\mathsf{d}} = \begin{bmatrix} [a_1^{-1}]_{p \not \ll p} & 0 \\ 0 & 0 \end{bmatrix}_{\mathscr{P}}, \qquad a^{\pi} = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}}, \tag{1.2}$$

where $p = aa^{\mathsf{d}}$, $\mathscr{P} = \{p, 1-p\}$, $a_1 \in [p \mathscr{A} p]^{-1}$, and $a_2 \in [(1-p)\mathscr{A}(1-p)]^{\mathsf{qnil}}$. Let us remark that if a has the above representation, then $a^{\mathsf{d}} = [a_1^{-1}]_{p \mathscr{A} p} = a_1^{\mathsf{d}}$.

The following lemmas are needed in what follows.

54

Lemma 1.1. Let $\mathscr{P} = \{p, 1-p\}$ be a total system of idempotents in \mathscr{A} and let $a, b \in \mathscr{A}$ have the following representation

$$a = \left[\begin{array}{cc} x & 0 \\ z & y \end{array} \right]_{\mathscr{P}}, \qquad b = \left[\begin{array}{cc} x & t \\ 0 & y \end{array} \right]_{\mathscr{P}}$$

Then there exist $(z_n)_{n=0}^{\infty} \subset (1-p)\mathscr{A}p$ and $(t_n)_{n=0}^{\infty} \subset p\mathscr{A}(1-p)$ such that

$$a^{n} = \begin{bmatrix} x^{n} & 0\\ z_{n} & y^{n} \end{bmatrix}_{\mathscr{P}}$$
 and $b^{n} = \begin{bmatrix} x^{n} & t_{n}\\ 0 & y^{n} \end{bmatrix}_{\mathscr{P}}$ $\forall n \in \mathbb{N}.$

The proof of this lemma is trivial by induction and we will not give it.

Lemma 1.2. [4, Theorem 3.3] Let $b \in \mathscr{A}^{\mathsf{d}}$, $a \in \mathscr{A}^{\mathsf{qnil}}$, and let $ab^{\pi} = a$ and $b^{\pi}ab = 0$. Then $a + b \in \mathscr{A}^{\mathsf{d}}$ and

$$(a+b)^{\mathsf{d}} = b^{\mathsf{d}} + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n.$$

The following Lemma is a generalization of Theorem 1 in [6]. Although it was stated for bounded linear operators in a Banach space, its proof remains valid for Banach algebras.

Lemma 1.3. Let $a, b \in \mathscr{A}^d$ such that ab = ba. Then $a + b \in \mathscr{A}^d$ if and only if $1 + a^d b \in \mathscr{A}^d$. In this case we have

$$(a+b)^{\mathsf{d}} = a^{\mathsf{d}}(1+a^{\mathsf{d}}b)bb^{\mathsf{d}} + b^{\pi}\sum_{n=0}^{\infty}(-b)^{n}(a^{\mathsf{d}})^{n+1} + \sum_{n=0}^{\infty}(b^{\mathsf{d}})^{n+1}(-a)^{n}a^{\pi}$$

Lemma 1.4. [4, Example 4.5] Let $a, b \in \mathscr{A}$ be generalized Drazin invertible and ab = 0, then a + b is generalized Drazin invertible and

$$(a+b)^{\mathsf{d}} = b^{\pi} \sum_{n=0}^{\infty} b^n (a^{\mathsf{d}})^{n+1} + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+1} a^n a^{\pi}.$$

Lemma 1.5. [4, Theorem 2.3] Let $x, y \in \mathcal{A}$, p an idempotent of \mathcal{A} and let x and y have the representation

$$x = \begin{bmatrix} a & 0 \\ c & b \end{bmatrix}_{\{p,1-p\}}, \qquad y = \begin{bmatrix} b & c \\ 0 & a \end{bmatrix}_{\{1-p,p\}}.$$
 (1.3)

(i) If $a \in [p \mathscr{A} p]^{\mathsf{d}}$ and $b \in [(1-p) \mathscr{A} (1-p)]^{\mathsf{d}}$, then $x, y \in \mathscr{A}^{\mathsf{d}}$ and

$$x^{\mathsf{d}} = \begin{bmatrix} a^{\mathsf{d}} & 0\\ u & b^{\mathsf{d}} \end{bmatrix}_{\{p,1-p\}}, \qquad y^{\mathsf{d}} = \begin{bmatrix} b^{\mathsf{d}} & u\\ 0 & a^{\mathsf{d}} \end{bmatrix}_{\{1-p,p\}}$$
(1.4)

where

$$u = \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} c a^n a^\pi + \sum_{n=0}^{\infty} b^\pi b^n c (a^{\mathsf{d}})^{n+2} - b^{\mathsf{d}} c a^{\mathsf{d}}.$$
 (1.5)

(ii) If $x \in \mathscr{A}^{\mathsf{d}}$ and $a \in [p\mathscr{A}p]^{\mathsf{d}}$, then $b \in [(1-p)\mathscr{A}(1-p)]^{\mathsf{d}}$, and x^{d} and y^{d} are given by (1.4) and (1.5).

Lemma 1.6. [5, Lemma 2.1] Let $a, b \in \mathscr{A}^{qnil}$ and let ab = ba or ab = 0, then $a + b \in \mathscr{A}^{qnil}$.

2. Main results

In this section, for $a, b \in \mathscr{A}$, we will investigate some formulas of $(a + b)^{d}$ in terms of a, b, a^{d} , and b^{d} .

Theorem 2.1. Let $a, b \in \mathscr{A}$ be generalized Drazin invertible and satisfying $b^{\pi}a^{\pi}ba = 0$, $b^{\pi}aa^{\mathsf{d}}baa^{\mathsf{d}} = 0$, $ab^{\pi} = a$. Then

$$(a+b)^{\mathsf{d}} = b^{\mathsf{d}} + u + b^{\pi}v,$$

where

$$v = a^{\mathsf{d}} + \sum_{n=0}^{\infty} (a^{\mathsf{d}})^{n+2} b(a+b)^n, \quad u = \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n (a+b)^{\pi} - b^{\mathsf{d}} a v.$$

Proof. Let $p = bb^{\mathsf{d}}$ and $\mathscr{P} = \{p, 1-p\}$. Let a and b have the following representation

$$b = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}}, \qquad a = \begin{bmatrix} a_3 & a_1 \\ a_4 & a_2 \end{bmatrix}_{\mathscr{P}}, \tag{2.1}$$

where b_1 is invertible in $p \mathscr{A} p$ and b_2 is quasinilpotent in $(1-p)\mathscr{A}(1-p)$. Since $ab^{\pi} = a$ and

$$ab^{\pi} = \begin{bmatrix} a_3 & a_1 \\ a_4 & a_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}},$$

we have $a_3 = a_4 = 0$. Hence

$$b = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}}, \qquad a = \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}}, \qquad a + b = \begin{bmatrix} b_1 & a_1 \\ 0 & a_2 + b_2 \end{bmatrix}_{\mathscr{P}}.$$
 (2.2)

By observing the representation of a given in (2.2) and a simple appealing of Lemma 1.5 yield

$$a^{\mathsf{d}} = \begin{bmatrix} 0 & a_1 (a_2^{\mathsf{d}})^2 \\ 0 & a_2^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}}$$
(2.3)

and

$$a^{\pi} = 1 - aa^{\mathsf{d}} = \begin{bmatrix} p & 0\\ 0 & 1 - p \end{bmatrix}_{\mathscr{P}} - \begin{bmatrix} 0 & a_1\\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_1(a_2^{\mathsf{d}})^2\\ 0 & a_2^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} p & -a_1a_2^{\mathsf{d}}\\ 0 & a_2^{\mathsf{d}} - p \end{bmatrix}_{\mathscr{P}}.$$
(2.4)

To explain better the "southeast" block of a^{π} in the above relation, let us permit say that a_2^{π} is defined as $1 - a_2 a_2^d$, the element $1 - p - a_2 a_2^d = a_2^{\pi} - p$ belongs to $(1 - p)\mathscr{A}(1 - p)$, but a_2^{π} does not need belong to $(1 - p)\mathscr{A}(1 - p)$. In fact, since $a_2^{\pi} - p \in (1 - p)\mathscr{A}(1 - p)$, one has $(a_2^{\pi} - p)p = p(a_2^{\pi} - p) = 0$, or equivalently, $a_2^{\pi}p = pa_2^{\pi} = p$.

In view of the last representation in (2.2), we shall apply Lemma 1.5 to find an expression of $(a + b)^d$. To this end, we need prove $b_1 \in [p \mathscr{A} p]^d$ and $a_2 + b_2 \in [(1-p)\mathscr{A}(1-p)]^d$. The fact $b_1 \in [p \mathscr{A} p]^d$ follows from $b \in \mathscr{A}^d$ and the representation of b in (2.2), in fact, we have $b^d = [b_1^{-1}]_{p \mathscr{A} p} = b_1^d$. We shall study $(a_2 + b_2)^d$ in the following lines. Let us represent a_2 and b_2 as follows:

$$a_{2} = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}_{\mathscr{Q}}, \qquad b_{2} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}_{\mathscr{Q}}, \tag{2.5}$$

where $q = a_2^d a_2$ and $\mathscr{Q} = \{q, 1 - p - q\}$ (which is a total system of idempotents in the subalgebra $(1 - p)\mathscr{A}(1 - p)$). Observe that since $q \in (1 - p)\mathscr{A}(1 - p)$ and 1 - p is the unity of $(1 - p)\mathscr{A}(1 - p)$, then q(1 - p) = (1 - p)q = q, or equivalently,

56

qp = pq = 0. Recall that in the above representation of a_2 in (2.5), the element a_{11} is invertible in $q \mathscr{A} q$ and a_{22} is quasinilpotent.

Since $b^{\pi}a^{\pi}ba = 0$ and by (2.2), (2.4), we have

$$\begin{array}{rcl} 0 & = & b^{\pi}a^{\pi}ba \\ & = & \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} p & -a_{1}a_{2}^{\mathsf{d}} \\ 0 & a_{2}^{\pi}-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_{1} & 0 \\ 0 & b_{2} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_{1} \\ 0 & a_{2} \end{bmatrix}_{\mathscr{P}} \\ & = & \begin{bmatrix} 0 & 0 \\ 0 & (a_{2}^{\pi}-p)b_{2}a_{2} \end{bmatrix}_{\mathscr{P}} \\ & = & (a_{2}^{\pi}-p)b_{2}a_{2}. \end{array}$$

But observe that $b_2 \in (1-p)\mathscr{A}(1-p)$, and thus, $pb_2 = 0$. Therefore, $0 = a_2^{\pi}b_2a_2$ holds.

It seems that we can use (2.5) and $0 = a_2^{\pi} b_2 a_2$ to get some information on b_{ij} , but observe that we cannot represent a_2^{π} in the total system of idempotents \mathscr{Q} since in general $a_2^{\pi} \notin (1-p)\mathscr{A}(1-p)$. To avoid this situation, let us define $\mathscr{R} = \{p, q, 1-p-q\}$, which in view of pq = qp = 0, it is trivial to see that \mathscr{R} is a total system of idempotents in \mathscr{A} . Since $a_2^{\pi} = 1 - a_2 a_2^{\mathsf{d}} = 1 - q$,

$$\begin{array}{rcl} 0 & = & a_{2}^{\pi}b_{2}a_{2} = \begin{bmatrix} p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 - p - q \end{bmatrix}_{\mathscr{R}} \begin{bmatrix} 0 & 0 & 0 \\ 0 & b_{11} & b_{12} \\ 0 & b_{21} & b_{22} \end{bmatrix}_{\mathscr{R}} \begin{bmatrix} 0 & 0 & 0 \\ 0 & a_{11} & 0 \\ 0 & 0 & a_{22} \end{bmatrix}_{\mathscr{R}} \\ & = & \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{21}a_{11} & b_{22}a_{22} \end{bmatrix}_{\mathscr{R}} \end{array}$$

Thus, $b_{21}a_{11} = 0$. Since a_{11} is invertible in $q \mathscr{A} q$ and $b_{21} \in (1 - p - q) \mathscr{A} q$ (this last assertion follows from the representation of b_2 given in (2.5)), we get

$$b_{21} = 0. (2.6)$$

Let us calculate $b^{\pi}aa^{\mathsf{d}}baa^{\mathsf{d}}$.

$$b^{\pi}aa^{\mathsf{d}}baa^{\mathsf{d}} = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_{1}a_{2}^{\mathsf{d}} \\ 0 & a_{2}a_{2}^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_{1} & 0 \\ 0 & b_{2} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_{1}a_{2}^{\mathsf{d}} \\ 0 & a_{2}a_{2}^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & a_{2}a_{2}^{\mathsf{d}}b_{2}a_{2}a_{2}^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}}.$$

Thus, $b^{\pi}aa^{\mathsf{d}}baa^{\mathsf{d}} = a_2a_2^{\mathsf{d}}b_2a_2a_2^{\mathsf{d}} = qb_2q$; hence representation (2.5) entails $b_{11} = 0$. Since (2.6) holds, then

$$b_2 a_2^{\pi} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b_{12} \\ 0 & 0 & b_{22} \end{bmatrix}_{\mathscr{R}} \begin{bmatrix} p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 - p - q \end{bmatrix}_{\mathscr{R}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b_{12} \\ 0 & 0 & b_{22} \end{bmatrix}_{\mathscr{R}} = b_2.$$

Thus, the following conditions

(i) $a_2 \in \mathscr{A}^{\mathsf{d}}$ (ii) b_2 is quasinilpotent (iii) $b_2 a_2^{\pi} = b_2$ (iv) $a_2^{\pi} b_2 a_2 = 0$.

are satisfied. Hence, we can apply Lemma 1.2 to get an expression of $(b_2 + a_2)^d$ obtaining

$$(a_2 + b_2)^{\mathsf{d}} = a_2^{\mathsf{d}} + \sum_{n=0}^{\infty} (a_2^{\mathsf{d}})^{n+2} b_2 (a_2 + b_2)^n.$$

By Lemma 1.5 applied to the representation of a + b given in (2.2) we obtain

$$(a+b)^{\mathsf{d}} = \begin{bmatrix} b_1^{\mathsf{d}} & u\\ 0 & (a_2+b_2)^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}},$$
(2.7)

where

$$u = \sum_{n=0}^{\infty} (b_1^{\mathsf{d}})^{n+2} a_1 (a_2 + b_2)^n (a_2 + b_2)^\pi + \sum_{n=0}^{\infty} b_1^\pi b_1^n a_1 [(a_2 + b_2)^{\mathsf{d}}]^{n+2} - b_1^{\mathsf{d}} a_1 (a_2 + b_2)^{\mathsf{d}}$$
(2.8)

(2.8) Recall that $b_1^{\mathsf{d}} = b^{\mathsf{d}}$. Easily we have $bb^{\mathsf{d}}a = a_1$, $bb^{\mathsf{d}}b = b_1$, and $b^{\pi}b = b_2$. From (2.3) we get $b^{\pi}a^{\mathsf{d}} = a_2^{\mathsf{d}}$. By Lemma 1.1 and the representations of a + b and a^{d} given in (2.2) and (2.3), respectively, we have $b^{\pi}(a+b)^k = (a_2 + b_2)^k$, and $b^{\pi}(a^{\mathsf{d}})^k = (a_2^{\mathsf{d}})^k$ for any positive integer k, Hence

$$(a_2 + b_2)^{\mathsf{d}} = b^{\pi} a^{\mathsf{d}} + \sum_{n=0}^{\infty} b^{\pi} (a^{\mathsf{d}})^{n+2} b^{\pi} b b^{\pi} (a+b)^n.$$

This last expression can be simplified by observing that $b^{\pi}bb^{\pi} = b^{\pi}b$ and that by Lemma 1.1, there exists a sequence $z_n \in \mathscr{A}$ such that

$$(a^{\mathsf{d}})^{n+2}b^{\pi} = \begin{bmatrix} 0 & z_n \\ 0 & (a_2^{\mathsf{d}})^{n+2} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & z_n \\ 0 & (a_2^{\mathsf{d}})^{n+2} \end{bmatrix}_{\mathscr{P}} = (a^{\mathsf{d}})^{n+2}.$$

Therefore,

$$(a_2 + b_2)^{\mathsf{d}} = b^{\pi} \left(a^{\mathsf{d}} + \sum_{n=0}^{\infty} (a^{\mathsf{d}})^{n+2} b(a+b)^n \right).$$
(2.9)

Now we will simplify the expression of u given in (2.8). Observe that for any $n \ge 0$, one has

$$n \ge 0 \qquad \Rightarrow \qquad (b_1^{\mathsf{d}})^{n+2} a_1 = (b^{\mathsf{d}})^{n+2} b b^{\mathsf{d}} a = (b^{\mathsf{d}})^{n+2} a. \tag{2.10}$$

Moreover, by (2.2) we have

$$\begin{aligned} (a+b)^{\pi} &= 1-(a+b)(a+b)^{\mathsf{d}} \\ &= \begin{bmatrix} p & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} - \begin{bmatrix} b_1 & a_1 \\ 0 & a_2+b_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1^{\mathsf{d}} & u \\ 0 & (a_2+b_2)^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}} \\ &= \begin{bmatrix} p-b_1b_1^{\mathsf{d}} & -b_1u-a_1(a_2+b_2)^{\mathsf{d}} \\ 0 & 1-p-(a_2+b_2)(a_2+b_2)^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}}. \end{aligned}$$

Thus, and by using Lemma 1.1 and (2.7), there exists a sequence $(x_n)_{n=1}^{\infty}$ in \mathscr{A} such that

$$b^{\pi}(a+b)^{n}(a+b)^{\pi} = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_{1}^{n} & x_{n} \\ 0 & (a_{2}+b_{2})^{n} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} p-b_{1}b_{1}^{\mathsf{d}} & -b_{1}u-a_{1}(a_{2}+b_{2})^{\mathsf{d}} \\ 0 & (a_{2}+b_{2})^{\pi}-p \end{bmatrix}_{\mathscr{P}} = (a_{2}+b_{2})^{n} \left[(a_{2}+b_{2})^{\pi}-p \right],$$

but recall that $a_2 + b_2 \in (1 - p) \mathscr{A}(1 - p)$, and thus, if n > 0, then $(a_2 + b_2)^n [(a_2 + b_2)^{\pi} - p] = (a_2 + b_2)^n (a_2 + b_2)^{\pi}$. Thus

$$n > 0 \qquad \Rightarrow \qquad b^{\pi}(a+b)^{n}(a+b)^{\pi} = (a_{2}+b_{2})^{n}(a_{2}+b_{2})^{\pi}.$$
 (2.11)

Now we can prove that

$$(b_1^{\mathsf{d}})^{n+2}a_1(a_2+b_2)^n(a_2+b_2)^{\pi} = (b^{\mathsf{d}})^{n+2}a(a+b)^n(a+b)^{\pi}$$
(2.12)

58

holds for any $n \in \mathbb{N}$. Since, as is easy to see, $ab^{\pi} = a$, then we have for any n > 0that (2.10) and (2.11) lead to

$$(b_1^{\mathsf{d}})^{n+2}a_1(a_2+b_2)^n(a_2+b_2)^{\pi} = (b^{\mathsf{d}})^{n+2}ab^{\pi}(a+b)^n(a+b)^{\pi} = (b^{\mathsf{d}})^{n+2}a(a+b)^n(a+b)^{\pi}.$$

Now, we will prove that (2.12) holds for $n = 0$:

Now, we will prove that (2.12) holds for n = 0:

$$(b^{\mathsf{d}})^{2} a(a+b)^{\pi} = \begin{bmatrix} (b_{1}^{\mathsf{d}})^{2} & 0 \\ 0 & 0 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_{1} \\ 0 & a_{2} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} p-b_{1}b_{1}^{\mathsf{d}} & -b_{1}u-a_{1}(a_{2}+b_{2})^{\mathsf{d}} \\ 0 & (a_{2}+b_{2})^{\pi}-p \end{bmatrix} \\ = \begin{bmatrix} 0 & (b_{1}^{\mathsf{d}})^{2}a_{1}\left[(a_{2}+b_{2})^{\pi}-p\right] \\ 0 & 0 \end{bmatrix}_{\mathscr{P}} = (b_{1}^{\mathsf{d}})^{2}a_{1}\left[(a_{2}+b_{2})^{\pi}-p\right].$$

But observe that $a_1 \in p \mathscr{A}(1-p)$, and hence $a_1 p = 0$. Thus, we have proved

$$(b^{\mathsf{d}})^2 a(a+b)^{\pi} = (b_1^{\mathsf{d}})^2 a_1 (a_2+b_2)^{\pi}.$$

And thus, (2.12) holds for any $n \in \mathbb{N}$.

Now, we are going to simplify the expression $\sum_{n=0}^{\infty} b_1^{\pi} b_1^n a_1 (a_2 + b_2)^{n+2}$ appearing in (2.8). Recall that $b_1^{\pi} = b^{\pi}$ and $a_1 = bb^{\mathsf{d}}a$ were obtained. Observe that if n > 0, then $b_1^{\pi} b_1^n = b^{\pi} b_1^n = (1-p)b_1^n = 0$ since $b_1 \in p \mathscr{A} p$. Furthermore, $b_1^{\pi} a_1 = b^{\pi} b b^{\mathsf{d}} a = 0$. Thus

$$\sum_{n=0}^{\infty} b_1^{\pi} b_1^n a_1 [(a_2 + b_2)^d]^{n+2} = 0.$$
(2.13)

From (2.9), $b_1^{\mathsf{d}} = b^{\mathsf{d}}$, $a_1 = bb^{\mathsf{d}}a$, and $ab^{\pi} = a$ we get $b_1^{\mathsf{d}}a_1(a_2+b_2)^{\mathsf{d}}$

$$\int_{1}^{\infty} a_{1}(a_{2} + b_{2})^{d} = b^{d}bb^{d}ab^{\pi} \left(a^{d} + \sum_{n=0}^{\infty} (a^{d})^{n+2}b(a+b)^{n} \right) = b^{d}a \left(a^{d} + \sum_{n=0}^{\infty} (a^{d})^{n+2}b(a+b)^{2} \right)$$
Now, (2.7), (2.8), (2.9), (2.12), (2.13), and (2.14) prove the theorem.

Now, (2.7), (2.8), (2.9), (2.12), (2.13), and (2.14) prove the theorem.

Remark 2.1. If b is group invertible, then the condition $b^{\pi}a^{\pi}ba = 0$ implies $b^{\pi}aa^{\mathsf{d}}baa^{\mathsf{d}} = 0$. In fact, since $bb^{\pi} = 0$, then $b^{\pi}aa^{\mathsf{d}}baa^{\mathsf{d}} = b^{\pi}(1-a^{\pi})baa^{\mathsf{d}} =$ $-b^{\pi}a^{\pi}baa^{\mathsf{d}} = 0.$

Remark 2.2. Theorem 2.1 extends Lemma 1.2. If b is quasinilpotent, then $b^{d} = 0$ and $b^{\pi} = 1$. Notice that $ba^{\pi} = b$ clearly implies $aa^{\mathsf{d}}baa^{\mathsf{d}} = 0$.

Theorem 2.2. Let $a, b \in \mathscr{A}$ be generalized Drazin invertible. Assume that $b^{\pi}ab =$ $b^{\pi}ba and ab^{\pi} = a$. Then

$$(a+b)^{\mathsf{d}} = b^{\mathsf{d}} + b^{\pi} \sum_{n=0}^{\infty} (-1)^n (a^{\mathsf{d}})^{n+1} b^n + \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n (a+b)^{\pi} - b^{\mathsf{d}} a \sum_{n=0}^{\infty} (-1)^n (a^{\mathsf{d}})^{n+1} b^n$$

Proof. As in the proof of Theorem 2.1, if we set $p = bb^{\mathsf{d}}$ and by using $ab^{\pi} = a$, then the representations given in (2.2) are valid, where $\mathscr{P} = \{p, 1-p\}, b_1$ is invertible in $p \mathscr{A} p$ and b_2 is quasinilpotent. Since

$$b^{\pi}ab = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & 0 \\ 0 & a_2b_2 \end{bmatrix}_{\mathscr{P}}$$
$$b^{\pi}ba = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & 0 \\ 0 & b_2a_2 \end{bmatrix}_{\mathscr{P}}$$

and $b^{\pi}ab = b^{\pi}ba$, then $a_2b_2 = b_2a_2$. Lemma 1.3 guarantees that b_2+a_2 is generalized Drazin invertible if and only if $1+b_2^d a_2$ is generalized Drazin invertible; but observe that b_2 is quasinilpotent, and therefore $b_2^d = 0$. So, $b_2 + a_2$ is generalized Drazin invertible. Also, $b_2^{\pi} = 1 - b_2b_2^d = 1$ and Lemma 1.3 lead to

$$(b_2 + a_2)^{\mathsf{d}} = \sum_{n=0}^{\infty} (a_2^{\mathsf{d}})^{n+1} (-b_2)^n.$$

By (2.3) and Lemma 1.1, there exist a sequence $(x_n)_{n=1}^{\infty}$ in $p\mathscr{A}(1-p)$ such that $(a^{\mathsf{d}})^n = x_n + (a_2^{\mathsf{d}})^n$ for any $n \in \mathbb{N}$, thus

$$b^{\pi}(a^{\mathsf{d}})^{n+1}b^{n} = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & x_{n} \\ 0 & (a_{2}^{\mathsf{d}})^{n+1} \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_{1}^{n} & 0 \\ 0 & b_{2}^{n} \end{bmatrix}_{\mathscr{P}}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & (a_{2}^{\mathsf{d}})^{n+1}b_{2}^{n} \end{bmatrix}_{\mathscr{P}} = (a_{2}^{\mathsf{d}})^{n+1}b_{2}^{n}.$$

Thus,

$$(a_2 + b_2)^{\mathsf{d}} = b^{\pi} \sum_{n=0}^{\infty} (-1)^n (a^{\mathsf{d}})^{n+1} b^n.$$
(2.15)

By employing Lemma 1.5 for the representation of a + b given in (2.2) we get

$$(a+b)^{\mathsf{d}} = b_1^{\mathsf{d}} + (b_2 + a_2)^{\mathsf{d}} + u, \qquad (2.16)$$

where

$$u = \sum_{n=0}^{\infty} (b_1^{\mathsf{d}})^{n+2} a_1 (a_2 + b_2)^n (a_2 + b_2)^{\pi} + \sum_{n=0}^{\infty} b_1^{\pi} b_1^n a_1 [(a_2 + b_2)^{\mathsf{d}}]^{n+2} - b_1^{\mathsf{d}} a_1 (a_2 + b_2)^{\mathsf{d}}.$$

As in the proof of Theorem 2.1, we have that (2.12) and $b_1^{\pi}b_1^n a_1 = 0$ for any $n \ge 0$ hold. Furthermore, since $a_1 = bb^d a$ and $ab^{\pi} = a$, then

$$b_1^{\mathsf{d}} a_1 (a_2 + b_2)^{\mathsf{d}} = b^{\mathsf{d}} b b^{\mathsf{d}} a b^{\pi} \sum_{n=0}^{\infty} (-1)^n (a^{\mathsf{d}})^{n+1} b^n = b^{\mathsf{d}} a \sum_{n=0}^{\infty} (-1)^n (a^{\mathsf{d}})^{n+1} b^n.$$

Therefore,

$$u = \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n (a+b)^{\pi} - b^{\mathsf{d}} a \sum_{n=0}^{\infty} (-1)^n (a^{\mathsf{d}})^{n+1} b^n.$$
(2.17)

Expressions (2.15), (2.16), and (2.17) permit finish the proof.

Theorem 2.3. Let $a, b \in \mathscr{A}$ be generalized Drazin invertible. Assume that they satisfy aba = 0 and $ab^2 = 0$. Then

 $a+b \in \mathscr{A}^{\mathsf{d}} \iff a^{\pi}(a+b) \in \mathscr{A}^{\mathsf{d}} \iff b^{\pi}a^{\pi}(a+b) \in \mathscr{A}^{\mathsf{d}} \iff a^{\pi}b^{\pi}(a+b) \in \mathscr{A}^{\mathsf{d}}.$ Furthermore, if $b^{\pi}ab = 0$ or $b^{\pi}ba = 0$, or $b^{\pi}ab = b^{\pi}ba$, then $a+b \in \mathscr{A}^{\mathsf{d}}$ and

$$(a+b)^{d} = b^{d} + v + b^{\pi}a^{d} + u + b^{\pi}(a^{d})^{2}b + ua^{d}b,$$

where

$$u = b^{\pi} a^{\pi} b^{\pi} \sum_{n=0}^{\infty} (a + ba^{\pi})^n b b^{\pi} (a^{\mathsf{d}})^{n+2},$$
$$v = \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a (a + b)^n [1 - s(a + b)] - b^{\mathsf{d}} a a^{\mathsf{d}},$$

where $s = b^{\pi}a^{\mathsf{d}} + u + b^{\pi}(a^{\mathsf{d}})^2b + ua^{\mathsf{d}}b$.

Proof. Since $ab^2 = 0$, then a and b have the matrix representation given in (2.2). Now, we use 0 = aba.

$$aba = \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & a_1b_2a_2 \\ 0 & a_2b_2a_2 \end{bmatrix}_{\mathscr{P}}$$

Thus $a_1b_2a_2 = a_2b_2a_2 = 0$. Let $q = a_2a_2^d$ and $\mathscr{Q} = \{q, 1 - p - q\}$ (a total system of idempotents in the algebra $(1 - p)\mathscr{A}(1 - p)$). We represent

$$a_{2} = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}_{\mathscr{Q}}, \qquad b_{2} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}_{\mathscr{Q}}, \qquad (2.18)$$

where a_{11} is invertible in the subalgebra $q \mathscr{A} q$ and a_{22} is quasinilpotent. We use $a_2 b_2 a_2 = 0$

$$a_{2}b_{2}a_{2} = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}_{\mathscr{Q}} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}_{\mathscr{Q}} \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}_{\mathscr{Q}} = \begin{bmatrix} a_{11}b_{11}a_{11} & a_{11}b_{12}a_{22} \\ a_{22}b_{21}a_{11} & a_{22}b_{22}a_{22} \end{bmatrix}_{\mathscr{Q}}$$

Thus, $0 = a_{11}b_{11}a_{11}$ and $0 = a_{11}b_{12}a_{22}$. The invertibility of a_{11} in the subalgebra $q \mathscr{A} q$ and $b_{11} \in q \mathscr{A} q$ ensure $b_{11} = 0$. In a similar way we have $b_{12}a_{22} = 0$. Using $ab^2 = 0$ leads to $a_2b_2^2 = 0$. Hence $a_{11}b_{12}b_{21} = 0$ and $a_{11}b_{12}b_{22} = 0$. The invertibility of a_{11} (in $q \mathscr{A} q$) leads to $b_{12}b_{21} = 0$ and $b_{12}b_{22} = 0$. Now let us define

$$x = \begin{bmatrix} 0 & b_{12} \\ 0 & 0 \end{bmatrix}_{\mathscr{Q}} \quad \text{and} \quad y = \begin{bmatrix} a_{11} & 0 \\ b_{21} & a_{22} + b_{22} \end{bmatrix}_{\mathscr{Q}}$$
(2.19)

From (2.18) and $b_{11} = 0$ one trivially gets $a_2 + b_2 = x + y$. From $b_{12}b_{21} = 0$, $b_{12}a_{22} = 0$, and $b_{12}b_{22} = 0$ we have xy = 0.

Let us prove

$$a+b \in \mathscr{A}^{\mathsf{d}} \qquad \Longleftrightarrow \qquad a_{22}+b_{22} \in [(1-p-q)\mathscr{A}(1-p-q)]^{\mathsf{d}}.$$
 (2.20)

⇒: Assume that $a + b \in \mathscr{A}^{\mathsf{d}}$, then by the representations given in (2.2) we have that $a_2 + b_2 \in [(1 - p)\mathscr{A}(1 - p)]^{\mathsf{d}}$, i.e., $a_2 + b_2 = x + y \in [(1 - p)\mathscr{A}(1 - p)]^{\mathsf{d}}$. We can apply Lemma 1.4 to y = -x + (x + y) because $-x \in \mathscr{A}^{\mathsf{d}}$ (since $(-x)^2 = 0$) and -x(x + y) = 0 obtaining $y \in \mathscr{A}^{\mathsf{d}}$. Lemma 1.5 and the representation of y in (2.19) ensure that $a_{22} + b_{22}$ is generalized Drazin invertible.

 \Leftarrow : Assume in this paragraph that $a_{22} + b_{22}$ is generalized Drazin invertible. By recalling that a_{11} is invertible in the subalgebra $q \mathscr{A} q$, the representation of y in (2.19) leads to $y \in [(1-p)\mathscr{A}(1-p)]^d$. Since $x^2 = 0$, xy = 0, and $x + y = a_2 + b_2$, Lemma 1.4 yields $a_2 + b_2 \in [(1-p)\mathscr{A}(1-p)]^d$. Now, Lemma 1.5 and the representation of a + b in (2.2) ensure that $a + b \in \mathscr{A}^d$.

Our next goal is to express the right side of the equivalence (2.20) in terms of a and b. To this end, let us define $\mathscr{R} = \{p, q, 1 - q - p\}$, which is easy to see that it is a total system of idempotents in \mathscr{A} . First we notice that

$$a_{2}^{\pi}(a_{2}+b_{2}) = \begin{bmatrix} p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1-p-q \end{bmatrix}_{\mathscr{R}} \begin{bmatrix} 0 & 0 & 0 \\ 0 & a_{11}+b_{11} & b_{12} \\ 0 & b_{21} & a_{22}+b_{22} \end{bmatrix}_{\mathscr{R}}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & (1-p-q)a_{21} & a_{22}+b_{22} \end{bmatrix}_{\mathscr{R}}, \qquad (2.21)$$

which, in view of Lemma 1.5, ensures that $a_{22} + b_{22}$ is generalized Drazin invertible if and only if $a_2^{\pi}(a_2 + b_2)$ is generalized Drazin invertible. Now, we shall use (2.4),

$$\begin{split} b_1 &\in p \mathscr{A} p, \, a_1 \in p \mathscr{A} (1-p), \text{ and } a_2, b_2 \in (1-p) \mathscr{A} (1-p), \\ a^{\pi} (a+b) &= \begin{bmatrix} p & -a_1 a_2^{\mathsf{d}} \\ 0 & a_2^{\pi} - p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & a_1 \\ 0 & a_2 + b_2 \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} b_1 & a_1 - a_1 a_2^{\mathsf{d}} (a_2 + b_2) \\ 0 & a_2^{\pi} (a_2 + b_2) \end{bmatrix}_{\mathscr{P}}, \\ b^{\pi} a^{\pi} (a+b) &= \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & a_1 - a_1 a_2^{\mathsf{d}} (a_2 + b_2) \\ 0 & a_2^{\pi} (a_2 + b_2) \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & 0 \\ 0 & a_2^{\pi} (a_2 + b_2) \end{bmatrix}_{\mathscr{P}}, \\ \text{and} \end{split}$$

$$a^{\pi}b^{\pi}(a+b) = \begin{bmatrix} p & -a_1a_2^d \\ 0 & a_2^{\pi} - p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & 0 \\ 0 & 1 - p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & a_1 \\ 0 & a_2 + b_2 \end{bmatrix}_{\mathscr{P}}$$

$$= \begin{bmatrix} 0 & -a_1a_2^d(a_2 + b_2) \\ 0 & a_2^{\pi}(a_2 + b_2) \end{bmatrix}_{\mathscr{P}},$$

an appealing to Lemma 1.5, leads to

$$a_2^{\pi}(a_2+b_2) \in \mathscr{A}^{\mathsf{d}} \iff a^{\pi}(a+b) \in \mathscr{A}^{\mathsf{d}} \iff b^{\pi}a^{\pi}(a+b) \in \mathscr{A}^{\mathsf{d}} \iff a^{\pi}b^{\pi}(a+b) \in \mathscr{A}^{\mathsf{d}}.$$

We shall prove the second part of the Theorem. Since

$$b^{\pi}ab = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & 0 \\ 0 & a_2b_2 \end{bmatrix}_{\mathscr{P}} = a_2b_2$$

and

$$b^{\pi}ba = \begin{bmatrix} 0 & 0 \\ 0 & 1-p \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} 0 & 0 \\ 0 & b_2a_2 \end{bmatrix}_{\mathscr{P}} = b_2a_2,$$

then

$$b^{\pi}ab = 0$$
 or $b^{\pi}ba = 0$ or $b^{\pi}ab = b^{\pi}ba \Rightarrow a_2b_2 = 0$ or $b_2a_2 = 0$ or $a_2b_2 = b_2a_2$.

The representations given in (2.18) lead to

 $a_2b_2 = 0$ or $b_2a_2 = 0$ or $a_2b_2 = b_2a_2 \Rightarrow a_{22}b_{22} = 0$ or $b_{22}a_{22} = 0$ or $a_{22}b_{22} = b_{22}a_{22}$. Since a_{22} and b_{22} are quasinilpotent, then the above implications and Lemma 1.6 lead to

 $b^{\pi}ab = 0$ or $b^{\pi}ba = 0$ or $b^{\pi}ab = b^{\pi}ba \Rightarrow a_{22} + b_{22}$ is quasinilpotent.

In particular, by employing equivalence (2.20) we get that $a+b \in \mathscr{A}^d$. Furthermore, by using Lemma 1.4, $x^2 = 0$, and xy = 0, one gets

$$(a_2 + b_2)^{\mathsf{d}} = (x + y)^{\mathsf{d}} = y^{\pi} \sum_{n=0}^{\infty} y^n (x^{\mathsf{d}})^{n+1} + \sum_{n=0}^{\infty} (y^{\mathsf{d}})^{n+1} x^n x^{\pi} = y^{\mathsf{d}} + (y^{\mathsf{d}})^2 x.$$

From (2.19) and Lemma 1.5 we get

$$y^{\mathsf{d}} = \left[\begin{array}{cc} a_{11}^{\mathsf{d}} & 0 \\ u & (a_{22} + b_{22})^{\mathsf{d}} \end{array} \right]_{\mathscr{Q}} = \left[\begin{array}{cc} a_{11}^{\mathsf{d}} & 0 \\ u & 0 \end{array} \right]_{\mathscr{Q}},$$

where

$$u = \sum_{n=0}^{\infty} (a_{22} + b_{22})^n b_{21} (a_{11}^{\mathsf{d}})^{n+2}.$$
 (2.22)

 So

$$(y^{\mathsf{d}})^{2}x = \begin{bmatrix} a_{11}^{\mathsf{d}} & 0\\ u & 0 \end{bmatrix}_{\mathscr{Q}} \begin{bmatrix} a_{11}^{\mathsf{d}} & 0\\ u & 0 \end{bmatrix}_{\mathscr{Q}} \begin{bmatrix} 0 & b_{12}\\ 0 & 0 \end{bmatrix}_{\mathscr{Q}} = \begin{bmatrix} 0 & (a_{11}^{\mathsf{d}})^{2}b_{12}\\ 0 & ua_{11}^{\mathsf{d}}b_{12} \end{bmatrix}_{\mathscr{Q}}.$$
 (2.23)

In view of (2.2) and (2.18) it is simple to obtain $b^{\pi}a^{\mathsf{d}} = a_2^{\mathsf{d}} = a_{11}^{\mathsf{d}}$ and $b^{\pi}(a^{\mathsf{d}})^2 = (a_2^{\mathsf{d}})^2 = (a_{11}^{\mathsf{d}})^2$. We have

$$a + ba^{\pi} = \begin{bmatrix} 0 & a_1 \\ 0 & a_2 \end{bmatrix}_{\mathscr{P}} + \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}_{\mathscr{P}} \begin{bmatrix} p & -a_1 a_2^{\mathsf{d}} \\ 0 & a_2^{\pi} - p \end{bmatrix}_{\mathscr{P}} = \begin{bmatrix} b_1 & a_1 - b_1 a_1 a_2^{\mathsf{d}} \\ 0 & a_2 + b_2 a_2^{\pi} \end{bmatrix}_{\mathscr{P}}$$

By Lemma 1.1, there exists a sequence $(w_n)_{n=0}^{\infty}$ in \mathscr{A} such that

$$(a + ba^{\pi})^{n} = \begin{bmatrix} b_{1}^{n} & w_{n} \\ 0 & (a_{2} + b_{2}a_{2}^{\pi})^{n} \end{bmatrix}_{\mathscr{P}}$$

and thus, $b^{\pi}(a + ba^{\pi})^n = (a_2 + b_2 a_2^{\pi})^n$. But another appealing to Lemma 1.1 and some computations as in (2.21) lead to $(1 - p - q)(a_2 + b_2 a_2^{\pi})^n = (a_{22} + b_{22})^n$. Observe that (2.4) yields $b^{\pi}a^{\pi} = a_2^{\pi} - p = 1 - q - p$. Thus $b^{\pi}a^{\pi}b^{\pi}(a + ba^{\pi})^n = (a_{22} + b_{22})^n$. In view of (2.18) and $b_{11} = 0$ we get $b_{21} = b_2q$. But, it is simple to prove $b^{\pi}aa^d = a_2a_2^d = q$ and $b_2 = bb^{\pi}$. Hence $b_{21} = bb^{\pi}b^{\pi}aa^d = bb^{\pi}aa^d$. Moreover, $(a_{11}^d)^k = (a_2^d)^k = b^{\pi}(a^d)^k$ holds for any $k \in \mathbb{N}$ in view of Lemma 1.1. If we take into account that $a^d b^{\pi} = a^d$ holds, then (2.22) becomes

$$u = b^{\pi} a^{\pi} b^{\pi} \sum_{n=0}^{\infty} (a + ba^{\pi})^n b b^{\pi} a (a^{\mathsf{d}})^{n+3} = b^{\pi} a^{\pi} b^{\pi} \sum_{n=0}^{\infty} (a + ba^{\pi})^n b b^{\pi} (a^{\mathsf{d}})^{n+2}.$$
 (2.24)

From $b_{11} = 0$, (2.18), and $a^{\mathsf{d}}b^{\pi} = a^{\mathsf{d}}$ we have $b_{12} = qb_2 = b^{\pi}aa^{\mathsf{d}}b^{\pi}b = b^{\pi}aa^{\mathsf{d}}b$. This observation allows us to simplify the entries of $(y^{\mathsf{d}})^2 x$ given in (2.23):

$$(a_{11}^{\mathsf{d}})^2 b_{12} = \left[b^{\pi} (a^{\mathsf{d}})^2\right] \left[b^{\pi} a a^{\mathsf{d}} b\right] = b^{\pi} (a^{\mathsf{d}})^2 b$$

and

$$ua_{11}^{\mathsf{d}}b_{12} = \left[b^{\pi}a^{\pi}b^{\pi}\sum_{n=0}^{\infty}(a+ba^{\pi})^{n}bb^{\pi}(a^{\mathsf{d}})^{n+2}\right]\left[b^{\pi}a^{\mathsf{d}}\right]\left[b^{\pi}aa^{\mathsf{d}}b\right] = ua^{\mathsf{d}}b.$$

Therefore,

 $(a_2+b_2)^{\mathsf{d}} = y^{\mathsf{d}} + (y^{\mathsf{d}})^2 x = a_{11}^{\mathsf{d}} + u + (a_{11}^{\mathsf{d}})^2 b_{12} + u a_{11}^{\mathsf{d}} b_{12} = b^{\pi} a^{\mathsf{d}} + u + b^{\pi} (a^{\mathsf{d}})^2 b + u a^{\mathsf{d}} b.$ (2.25)

By Lemma 1.5,

$$(a+b)^{\mathsf{d}} = \begin{bmatrix} b_1^{\mathsf{d}} & v \\ 0 & (a_2+b_2)^{\mathsf{d}} \end{bmatrix}_{\mathscr{P}}, \qquad (2.26)$$

where

$$v = \sum_{n=0}^{\infty} (b_1^{\mathsf{d}})^{n+2} a_1 (a_2 + b_2)^n a_2^{\pi} + \sum_{n=0}^{\infty} b_1^{\pi} b_1^n a_1 [(a_2 + b_2)^{\mathsf{d}}]^{n+2} - b_1^{\mathsf{d}} a_1 (a_2 + b_2)^{\mathsf{d}}.$$

Since $b_1^{\mathsf{d}} = b^{\mathsf{d}}$, $a_1 = bb^{\mathsf{d}}a$, $(a_2 + b_2)^n = b^{\pi}(a+b)^n$, $a_2, b_2 \in (1-p)\mathscr{A}(1-p)$, $a_2^{\pi} = p + b^{\pi}a^{\pi}$, $ab^{\pi} = a$, $a^{\mathsf{d}}b^{\pi} = a^{\mathsf{d}}$ and $ub^{\pi} = u$ (this last equality is obtained from (2.24)) we have

$$(a_2 + b_2)^{\pi} = 1 - (a_2 + b_2)^{\mathsf{d}}(a_2 + b_2)$$

= 1 - (b^{\pi}a^{\mathsf{d}} + u + b^{\pi}(a^{\mathsf{d}})^2b + ua^{\mathsf{d}}b)b^{\pi}(a + b)
= 1 - (b^{\pi}a^{\mathsf{d}} + u + b^{\pi}(a^{\mathsf{d}})^2b + ua^{\mathsf{d}}b)(a + b)

and

$$(b_1^{\mathsf{d}})^{n+2} a_1 (a_2 + b_2)^n (a_2 + b_2)^\pi = (b^{\mathsf{d}})^{n+2} b b^{\mathsf{d}} a b^\pi (a+b)^n (a_2 + b_2)^\pi = (b^{\mathsf{d}})^{n+2} a (a+b)^n (a_2 + b_2)^\pi.$$

As is easy to see, $b_1^{\pi}b_1^n = 0$ for any $n \ge 1$. Moreover, $b_1^{\pi}a_1 = b^{\pi}(bb^{\mathsf{d}}a) = b^{\pi}(1-b^{\pi})a = 0$, and $b_1^{\mathsf{d}}a_1a_2^{\mathsf{d}} = (b^{\mathsf{d}})(bb^{\mathsf{d}}a)(b^{\pi}a^{\mathsf{d}}) = b^{\mathsf{d}}aa^{\mathsf{d}}$. Thus, v reduces to

$$v = \sum_{n=0}^{\infty} (b^{\mathsf{d}})^{n+2} a(a+b)^n [1 - s(a+b)] - b^{\mathsf{d}} a a^{\mathsf{d}}, \qquad (2.27)$$

where $s = b^{\pi}a^{\mathsf{d}} + u + b^{\pi}(a^{\mathsf{d}})^{2}b + ua^{\mathsf{d}}b$. Expressions (2.25)–(2.27) allow finish the proof.

Acknowledgements

The first author was supported by Spanish Project MTM2010-18539.

References

- Ben-Israel, A. and Greville T.N.E.: Generalized Inverses: Theory and Applications, Wiley-Interscience New York, 1974, second ed. Springer, New York, 2002.
- [2] Campbell S.L. and Meyer C.D.: Generalized Inverses of Linear Transformations, Pitman, London, 1979.
- [3] Castro González N.: Additive perturbation results for the Drazin inverse, Linear Algebra Appl. Vol.397, (2005) 279-297.
- [4] Castro González N and Koliha J.J.: New additive results for the g-Drazin inverse, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Vol.134, (2004) 1085-1097.
- [5] Cvetković-Ilić D.S., Djordjević D.S. and Wei Y.: Additive results for the generalized Drazin inverse in a Banach algebra, Linear Algebra Appl. Vol.418, (2006) 53-61.
- [6] Deng C. and Wei Y.: New additive results for the generalized Drazin inverse, Math. Anal. Appl. Vol.370, (2010) 313-321.
- [7] Djordjević D.S. and Wei Y.: Additive results for the generalized Drazin inverse, J. Aust. Math. Soc. Vol.73, (2002) 115-126.
- [8] Hartwig R.E., Wang G.R. and Wei Y.: Some additive results on Drazin inverse, Linear Algebra Appl. Vol.322, (2001) 207-217.
- [9] Koliha J.J.: A generalized Drazin inverse, Glasg. Math. J. Vol.38, (1996) 367-381.
- [10] Martínez-Serrano M.F. and Castro-González N.: On the Drazin inverse of blocks matrices and generalized schur complement, App. Math. Comp. Vol.215, (2009) 2733-2740.
- [11] Yang H. and Liu X.: The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math. Vol.235, (2011), 1412-1417.

¹ DEPARTAMENTO DE MATEMÁTICA APLICADA, UNIVERSIDAD POLITÉCNICA DE VALENCIA, CAMINO DE VERA S/N. 46022, VALENCIA, ESPAÑA.

 $E\text{-}mail\ address: \ \texttt{jbenitez@mat.upv.es}$

 2 College of Mathematics and Computer Science, Guangxi University for National-ities, Nanning 530006, P.R. China.

E-mail address: xiaojiliu72@yahoo.com.cn, yonghui1676@163.com