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REPRESENTATIONS FOR THE GENERALIZED DRAZIN

INVERSE IN A BANACH ALGEBRA

(COMMUNICATED BY FUAD KITTANEH)

J. BENÍTEZ1, X LIU2 AND Y. QIN2

Abstract. In this paper, we investigate additive properties for the generalized
Drazin inverse in a Banach algebra A . We give some representations for the
generalized Drazin inverse of a + b, where a and b are elements of A under
some new conditions, extending some known results.

1. Introduction

The Drazin inverse has important applications in matrix theory and fields such
as statistics, probability, linear systems theory, differential and difference equations,
Markov chains, and control theory ([1, 2, 11]). In [9], Koliha extended the Drazin
invertibility in the setting of Banach algebras with applications to bounded linear
operators on a Banach space. In this paper, Koliha was able to deduce a formula
for the generalized Drazin inverse of a+ b when ab = ba = 0. The general question
of how to express the generalized Drazin inverse of a+ b as a function of a, b, and
the generalized Drazin inverses of a and b without side conditions, is very difficult
and remains open. R.E. Hartwig, G.R. Wang, and Y. Wei studied in [8] the Drazin
inverse of a sum of two matrices A and B when AB = 0. In the papers [3, 4, 5, 7],
some new conditions under which the generalized Drazin inverse of the sum a+ b
in a Banach algebra is explicitly expressed in terms of a, b, and the generalized
Drazin inverses of a and b.

In this paper we introduce some new conditions and we extend some known
expressions for the generalized Drazin inverse of a+b, where a and b are generalized
Drazin invertible in a unital Banach algebra.

Throughout this paper we will denote by A a unital Banach algebra with unity
1. Let A −1 and A qnil denote the sets of all invertible and quasinilpotent elements
in A , respectively. Explicitly,

A
−1 = {a ∈ A : ∃ x ∈ A : ax = xa = 1},

A
qnil = {a ∈ A : lim

n→+∞
‖an‖1/n = 0}.
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If B is a subalgebra of the unital algebra A , for an element b ∈ B−1, we shall
denote by [b−1]B the inverse of b in B. Let us observe that in general B−1 6⊂ A −1

(for example, if p ∈ A is a nontrivial idempotent and B is the subalgebra pA p,
then the unity of B is p, and therefore, p ∈ B−1 \ A −1).

Let a ∈ A , if there exists b ∈ A such that

bab = b, ab = ba, a(1− ab) is nilpotent, (1.1)

then b is the Drazin inverse of a, denoted by aD and it is unique. If the last condition
in (1.1) is replaced by a(1 − ab) is quasinilpotent, then b is the generalized Drazin

inverse, denoted by ad and is also unique. Evidently aad is an idempotent, and it
is customary to denote aπ = 1− aad. We shall denote

A
d = {a ∈ A : ∃ ad}.

In particular, if a(1−ab) = 0 then b is called the group inverse of a. It was proved in
[9, Lemma 2.4] that ad exists if and only if and only if exists an idempotent q ∈ A

such that aq = qa, aq is quasinilpotent, and a+q is invertible. The following simple
remark will be useful.

Remark 1.1. If the subalgebra B ⊂ A has unity, then B−1 ⊂ A d and if b ∈ B−1,

then bd = [b−1]B. In fact, let e be the unity of B, since b[b−1]B = [b−1]Bb = e, it
is easy to see b[b−1]Bb = b, [b−1]Bb[b−1]B = [b−1]B, and [b−1]Bb = b[b−1]B.

Following [4], we say that P = {p1, p2, . . . , pn} is a total system of idempotents

in A if p2i = pi for all i, pipj = 0 if i 6= j, and p1+· · ·+pn = 1. Given a total system
P of idempotents in A , we consider the set Mn(A ,P) consisting of all matrices
A = [aij ]

n
i,j=1 with elements in A such that aij ∈ piA pj for all i, j ∈ {1, . . . , n}.

Let us recall that piA pi is a subalgebra of A with unity pi. In [4, Lemma 2.1] it
was proved that φ : A → Mn(A ,P) given by

φ(x) =











p1xp1 p1xp2 · · · p1xpn
p2xp1 p2xp2 · · · p2xpn

...
...

. . .
...

pnxp1 pnxp2 · · · pnxpn











P

is an isometric algebra isomorphism. In the sequel, we shall identify x = φ(x) for
x ∈ A . Another useful (although trivial) identity is

x =

n
∑

i,j=1

pixpj ∀ x ∈ A .

If a ∈ A is generalized Drazin invertible, then we have the following matrix
representations:

a =

[

a1 0
0 a2

]

P

, ad =

[

[a1
−1]pA p 0
0 0

]

P

, aπ =

[

0 0
0 1− p

]

P

,

(1.2)
where p = aad, P = {p, 1− p}, a1 ∈ [pA p]−1, and a2 ∈ [(1 − p)A (1 − p)]qnil. Let
us remark that if a has the above representation, then ad = [a1

−1]pA p = ad1.
The following lemmas are needed in what follows.



REPRESENTATIONS FOR THE GENERALIZED DRAZIN INVERSE 55

Lemma 1.1. Let P = {p, 1 − p} be a total system of idempotents in A and let

a, b ∈ A have the following representation

a =

[

x 0
z y

]

P

, b =

[

x t
0 y

]

P

.

Then there exist (zn)
∞
n=0 ⊂ (1− p)A p and (tn)

∞
n=0 ⊂ pA (1 − p) such that

an =

[

xn 0
zn yn

]

P

and bn =

[

xn tn
0 yn

]

P

∀ n ∈ N.

The proof of this lemma is trivial by induction and we will not give it.

Lemma 1.2. [4, Theorem 3.3] Let b ∈ A d, a ∈ A qnil, and let abπ = a and bπab = 0.
Then a+ b ∈ A d and

(a+ b)d = bd +

∞
∑

n=0

(bd)n+2a(a+ b)n.

The following Lemma is a generalization of Theorem 1 in [6]. Although it was
stated for bounded linear operators in a Banach space, its proof remains valid for
Banach algebras.

Lemma 1.3. Let a, b ∈ A d such that ab = ba. Then a + b ∈ A d if and only if

1 + adb ∈ A d. In this case we have

(a+ b)d = ad(1 + adb)bbd + bπ
∞
∑

n=0

(−b)n(ad)n+1 +

∞
∑

n=0

(bd)n+1(−a)naπ.

Lemma 1.4. [4, Example 4.5] Let a, b ∈ A be generalized Drazin invertible and

ab = 0, then a+ b is generalized Drazin invertible and

(a+ b)d = bπ
∞
∑

n=0

bn(ad)n+1 +

∞
∑

n=0

(bd)n+1anaπ.

Lemma 1.5. [4, Theorem 2.3] Let x, y ∈ A , p an idempotent of A and let x and

y have the representation

x =

[

a 0
c b

]

{p,1−p}

, y =

[

b c
0 a

]

{1−p,p}

. (1.3)

(i) If a ∈ [pA p]d and b ∈ [(1 − p)A (1 − p)]d, then x, y ∈ A d and

xd =

[

ad 0
u bd

]

{p,1−p}

, yd =

[

bd u
0 ad

]

{1−p,p}

(1.4)

where

u =
∞
∑

n=0

(bd)n+2canaπ +
∞
∑

n=0

bπbnc(ad)n+2 − bdcad. (1.5)

(ii) If x ∈ A d and a ∈ [pA p]d, then b ∈ [(1− p)A (1− p)]d, and xd and yd are

given by (1.4) and (1.5).

Lemma 1.6. [5, Lemma 2.1] Let a, b ∈ A qnil and let ab = ba or ab = 0, then

a+ b ∈ A qnil.
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2. Main results

In this section, for a, b ∈ A , we will investigate some formulas of (a + b)d in
terms of a, b, ad, and bd.

Theorem 2.1. Let a, b ∈ A be generalized Drazin invertible and satisfying bπaπba =
0, bπaadbaad = 0, abπ = a. Then

(a+ b)d = bd + u+ bπv,

where

v = ad +

∞
∑

n=0

(ad)n+2b(a+ b)n, u =

∞
∑

n=0

(bd)n+2a(a+ b)n(a+ b)π − bdav.

Proof. Let p = bbd and P = {p, 1−p}. Let a and b have the following representation

b =

[

b1 0
0 b2

]

P

, a =

[

a3 a1
a4 a2

]

P

, (2.1)

where b1 is invertible in pA p and b2 is quasinilpotent in (1 − p)A (1 − p). Since
abπ = a and

abπ =

[

a3 a1
a4 a2

]

P

[

0 0
0 1− p

]

P

,

we have a3 = a4 = 0. Hence

b =

[

b1 0
0 b2

]

P

, a =

[

0 a1
0 a2

]

P

, a+ b =

[

b1 a1
0 a2 + b2

]

P

. (2.2)

By observing the representation of a given in (2.2) and a simple appealing of
Lemma 1.5 yield

ad =

[

0 a1(a
d
2)

2

0 ad2

]

P

(2.3)

and

aπ = 1−aad =

[

p 0
0 1− p

]

P

−

[

0 a1
0 a2

]

P

[

0 a1(a
d
2)

2

0 ad2

]

P

=

[

p −a1a
d
2

0 aπ2 − p

]

P

.

(2.4)
To explain better the “southeast” block of aπ in the above relation, let us permit
say that aπ2 is defined as 1 − a2a

d
2, the element 1 − p − a2a

d
2 = aπ2 − p belongs to

(1 − p)A (1 − p), but aπ2 does not need belong to (1 − p)A (1 − p). In fact, since
aπ2 − p ∈ (1 − p)A (1 − p), one has (aπ2 − p)p = p(aπ2 − p) = 0, or equivalently,
aπ2p = paπ2 = p.

In view of the last representation in (2.2), we shall apply Lemma 1.5 to find
an expression of (a + b)d. To this end, we need prove b1 ∈ [pA p]d and a2 + b2 ∈
[(1−p)A (1−p)]d. The fact b1 ∈ [pA p]d follows from b ∈ A d and the representation

of b in (2.2), in fact, we have bd = [b1
−1]pA p = bd1. We shall study (a2 + b2)

d in the
following lines. Let us represent a2 and b2 as follows:

a2 =

[

a11 0
0 a22

]

Q

, b2 =

[

b11 b12
b21 b22

]

Q

, (2.5)

where q = ad2a2 and Q = {q, 1 − p − q} (which is a total system of idempotents
in the subalgebra (1 − p)A (1 − p)). Observe that since q ∈ (1 − p)A (1 − p) and
1− p is the unity of (1− p)A (1− p), then q(1− p) = (1− p)q = q, or equivalently,
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qp = pq = 0. Recall that in the above representation of a2 in (2.5), the element a11
is invertible in qA q and a22 is quasinilpotent.

Since bπaπba = 0 and by (2.2), (2.4), we have

0 = bπaπba

=

[

0 0
0 1− p

]

P

[

p −a1a
d
2

0 aπ2 − p

]

P

[

b1 0
0 b2

]

P

[

0 a1
0 a2

]

P

=

[

0 0
0 (aπ2 − p)b2a2

]

P

= (aπ2 − p)b2a2.

But observe that b2 ∈ (1 − p)A (1 − p), and thus, pb2 = 0. Therefore, 0 = aπ2 b2a2
holds.

It seems that we can use (2.5) and 0 = aπ2 b2a2 to get some information on
bij , but observe that we cannot represent aπ2 in the total system of idempotents
Q since in general aπ2 /∈ (1 − p)A (1 − p). To avoid this situation, let us define
R = {p, q, 1− p− q}, which in view of pq = qp = 0, it is trivial to see that R is a
total system of idempotents in A . Since aπ2 = 1− a2a

d
2 = 1− q,

0 = aπ2 b2a2 =





p 0 0
0 0 0
0 0 1− p− q





R





0 0 0
0 b11 b12
0 b21 b22





R





0 0 0
0 a11 0
0 0 a22





R

=





0 0 0
0 0 0
0 b21a11 b22a22





R

.

Thus, b21a11 = 0. Since a11 is invertible in qA q and b21 ∈ (1− p− q)A q (this last
assertion follows from the representation of b2 given in (2.5)), we get

b21 = 0. (2.6)

Let us calculate bπaadbaad.

bπaadbaad =

[

0 0
0 1− p

]

P

[

0 a1a
d
2

0 a2a
d
2

]

P

[

b1 0
0 b2

]

P

[

0 a1a
d
2

0 a2a
d
2

]

P

=

[

0 0
0 a2a

d
2b2a2a

d
2

]

P

.

Thus, bπaadbaad = a2a
d
2b2a2a

d
2 = qb2q; hence representation (2.5) entails b11 = 0.

Since (2.6) holds, then

b2a
π
2 =





0 0 0
0 0 b12
0 0 b22





R





p 0 0
0 0 0
0 0 1− p− q





R

=





0 0 0
0 0 b12
0 0 b22





R

= b2.

Thus, the following conditions

(i) a2 ∈ A
d (ii) b2 is quasinilpotent (iii) b2a

π
2 = b2 (iv) aπ2 b2a2 = 0.

are satisfied. Hence, we can apply Lemma 1.2 to get an expression of (b2 + a2)
d

obtaining

(a2 + b2)
d = ad2 +

∞
∑

n=0

(ad2)
n+2b2(a2 + b2)

n.
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By Lemma 1.5 applied to the representation of a+ b given in (2.2) we obtain

(a+ b)d =

[

bd1 u
0 (a2 + b2)

d

]

P

, (2.7)

where

u =

∞
∑

n=0

(bd1)
n+2a1(a2 + b2)

n(a2 + b2)
π +

∞
∑

n=0

bπ1 b
n
1a1[(a2 + b2)

d]n+2 − bd1a1(a2 + b2)
d.

(2.8)
Recall that bd1 = bd. Easily we have bbda = a1, bb

db = b1, and bπb = b2. From (2.3)
we get bπad = ad2. By Lemma 1.1 and the representations of a+ b and ad given in
(2.2) and (2.3), respectively, we have bπ(a+ b)k = (a2 + b2)

k, and bπ(ad)k = (ad2)
k

for any positive integer k, Hence

(a2 + b2)
d = bπad +

∞
∑

n=0

bπ(ad)n+2bπbbπ(a+ b)n.

This last expression can be simplified by observing that bπbbπ = bπb and that by
Lemma 1.1, there exists a sequence zn ∈ A such that

(ad)n+2bπ =

[

0 zn
0 (ad2)

n+2

]

P

[

0 0
0 1− p

]

P

=

[

0 zn
0 (ad2)

n+2

]

P

= (ad)n+2.

Therefore,

(a2 + b2)
d = bπ

(

ad +

∞
∑

n=0

(ad)n+2b(a+ b)n

)

. (2.9)

Now we will simplify the expression of u given in (2.8). Observe that for any n ≥ 0,
one has

n ≥ 0 ⇒ (bd1)
n+2a1 = (bd)n+2bbda = (bd)n+2a. (2.10)

Moreover, by (2.2) we have

(a+ b)π = 1− (a+ b)(a+ b)d

=

[

p 0
0 1− p

]

P

−

[

b1 a1
0 a2 + b2

]

P

[

bd1 u
0 (a2 + b2)

d

]

P

=

[

p− b1b
d
1 −b1u− a1(a2 + b2)

d

0 1− p− (a2 + b2)(a2 + b2)
d

]

P

.

Thus, and by using Lemma 1.1 and (2.7), there exists a sequence (xn)
∞
n=1 in A

such that

bπ(a+ b)n(a+ b)π

=

[

0 0
0 1− p

]

P

[

bn1 xn

0 (a2 + b2)
n

]

P

[

p− b1b
d
1 −b1u− a1(a2 + b2)

d

0 (a2 + b2)
π − p

]

P

= (a2 + b2)
n [(a2 + b2)

π − p] ,

but recall that a2 + b2 ∈ (1 − p)A (1 − p), and thus, if n > 0, then (a2 +
b2)

n [(a2 + b2)
π − p] = (a2 + b2)

n(a2 + b2)
π. Thus

n > 0 ⇒ bπ(a+ b)n(a+ b)π = (a2 + b2)
n(a2 + b2)

π . (2.11)

Now we can prove that

(bd1)
n+2a1(a2 + b2)

n(a2 + b2)
π = (bd)n+2a(a+ b)n(a+ b)π (2.12)
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holds for any n ∈ N. Since, as is easy to see, abπ = a, then we have for any n > 0
that (2.10) and (2.11) lead to

(bd1)
n+2a1(a2+b2)

n(a2+b2)
π = (bd)n+2abπ(a+b)n(a+b)π = (bd)n+2a(a+b)n(a+b)π.

Now, we will prove that (2.12) holds for n = 0:

(bd)2a(a+ b)π =

[

(bd1)
2 0

0 0

]

P

[

0 a1
0 a2

]

P

[

p− b1b
d
1 −b1u− a1(a2 + b2)

d

0 (a2 + b2)
π − p

]

P

=

[

0 (bd1)
2a1 [(a2 + b2)

π − p]
0 0

]

P

= (bd1)
2a1 [(a2 + b2)

π − p] .

But observe that a1 ∈ pA (1 − p), and hence a1p = 0. Thus, we have proved

(bd)2a(a+ b)π = (bd1)
2a1(a2 + b2)

π.

And thus, (2.12) holds for any n ∈ N.
Now, we are going to simplify the expression

∑∞
n=0 b

π
1 b

n
1a1(a2+b2)

n+2 appearing
in (2.8). Recall that bπ1 = bπ and a1 = bbda were obatined. Observe that if n > 0,
then bπ1 b

n
1 = bπbn1 = (1−p)bn1 = 0 since b1 ∈ pA p. Furthermore, bπ1a1 = bπbbda = 0.

Thus
∞
∑

n=0

bπ1 b
n
1a1[(a2 + b2)

d]n+2 = 0. (2.13)

From (2.9), bd1 = bd, a1 = bbda, and abπ = a we get

bd1a1(a2 + b2)
d =

= bdbbdabπ

(

ad +

∞
∑

n=0

(ad)n+2b(a+ b)n

)

= bda

(

ad +

∞
∑

n=0

(ad)n+2b(a+ b)n

)

.(2.14)

Now, (2.7), (2.8), (2.9), (2.12), (2.13), and (2.14) prove the theorem. �

Remark 2.1. If b is group invertible, then the condition bπaπba = 0 implies

bπaadbaad = 0. In fact, since bbπ = 0, then bπaadbaad = bπ(1 − aπ)baad =
−bπaπbaad = 0.

Remark 2.2. Theorem 2.1 extends Lemma 1.2. If b is quasinilpotent, then bd = 0
and bπ = 1. Notice that baπ = b clearly implies aadbaad = 0.

Theorem 2.2. Let a, b ∈ A be generalized Drazin invertible. Assume that bπab =
bπba and abπ = a. Then

(a+ b)d = bd+

+bπ
∞
∑

n=0

(−1)n(ad)n+1bn +
∞
∑

n=0

(bd)n+2a(a+ b)n(a+ b)π − bda
∞
∑

n=0

(−1)n(ad)n+1bn.

Proof. As in the proof of Theorem 2.1, if we set p = bbd and by using abπ = a, then
the representations given in (2.2) are valid, where P = {p, 1 − p}, b1 is invertible
in pA p and b2 is quasinilpotent. Since

bπab =

[

0 0
0 1− p

]

P

[

0 a1
0 a2

]

P

[

b1 0
0 b2

]

P

=

[

0 0
0 a2b2

]

P

,

bπba =

[

0 0
0 1− p

]

P

[

b1 0
0 b2

]

P

[

0 a1
0 a2

]

P

=

[

0 0
0 b2a2

]

P

,
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and bπab = bπba, then a2b2 = b2a2. Lemma 1.3 guarantees that b2+a2 is generalized
Drazin invertible if and only if 1+bd2a2 is generalized Drazin invertible; but observe
that b2 is quasinilpotent, and therefore bd2 = 0. So, b2 + a2 is generalized Drazin
invertible. Also, bπ2 = 1− b2b

d
2 = 1 and Lemma 1.3 lead to

(b2 + a2)
d =

∞
∑

n=0

(ad2)
n+1(−b2)

n.

By (2.3) and Lemma 1.1, there exist a sequence (xn)
∞
n=1 in pA (1 − p) such that

(ad)n = xn + (ad2)
n for any n ∈ N, thus

bπ(ad)n+1bn =

[

0 0
0 1− p

]

P

[

0 xn

0 (ad2)
n+1

]

P

[

bn1 0
0 bn2

]

P

=

[

0 0
0 (ad2)

n+1bn2

]

P

= (ad2)
n+1bn2 .

Thus,

(a2 + b2)
d = bπ

∞
∑

n=0

(−1)n(ad)n+1bn. (2.15)

By employing Lemma 1.5 for the representation of a+ b given in (2.2) we get

(a+ b)d = bd1 + (b2 + a2)
d + u, (2.16)

where

u =

∞
∑

n=0

(bd1)
n+2a1(a2 + b2)

n(a2 + b2)
π +

∞
∑

n=0

bπ1 b
n
1a1[(a2 + b2)

d]n+2 − bd1a1(a2 + b2)
d.

As in the proof of Theorem 2.1, we have that (2.12) and bπ1 b
n
1a1 = 0 for any n ≥ 0

hold. Furthermore, since a1 = bbda and abπ = a, then

bd1a1(a2 + b2)
d = bdbbdabπ

∞
∑

n=0

(−1)n(ad)n+1bn = bda

∞
∑

n=0

(−1)n(ad)n+1bn.

Therefore,

u =
∞
∑

n=0

(bd)n+2a(a+ b)n(a+ b)π − bda
∞
∑

n=0

(−1)n(ad)n+1bn. (2.17)

Expressions (2.15), (2.16), and (2.17) permit finish the proof. �

Theorem 2.3. Let a, b ∈ A be generalized Drazin invertible. Assume that they

satisfy aba = 0 and ab2 = 0. Then

a+ b ∈ A
d ⇐⇒ aπ(a+ b) ∈ A

d ⇐⇒ bπaπ(a+ b) ∈ A
d ⇐⇒ aπbπ(a+ b) ∈ A

d.

Furthermore, if bπab = 0 or bπba = 0, or bπab = bπba, then a+ b ∈ A d and

(a+ b)d = bd + v + bπad + u+ bπ(ad)2b+ uadb,

where

u = bπaπbπ
∞
∑

n=0

(a+ baπ)nbbπ(ad)n+2,

v =

∞
∑

n=0

(bd)n+2a(a+ b)n[1− s(a+ b)]− bdaad,

where s = bπad + u+ bπ(ad)2b+ uadb.
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Proof. Since ab2 = 0, then a and b have the matrix representation given in (2.2).
Now, we use 0 = aba.

aba =

[

0 a1
0 a2

]

P

[

b1 0
0 b2

]

P

[

0 a1
0 a2

]

P

=

[

0 a1b2a2
0 a2b2a2

]

P

.

Thus a1b2a2 = a2b2a2 = 0. Let q = a2a
d
2 and Q = {q, 1− p− q} (a total system of

idempotents in the algebra (1− p)A (1− p)). We represent

a2 =

[

a11 0
0 a22

]

Q

, b2 =

[

b11 b12
b21 b22

]

Q

, (2.18)

where a11 is invertible in the subalgebra qA q and a22 is quasinilpotent. We use
a2b2a2 = 0

a2b2a2 =

[

a11 0
0 a22

]

Q

[

b11 b12
b21 b22

]

Q

[

a11 0
0 a22

]

Q

=

[

a11b11a11 a11b12a22
a22b21a11 a22b22a22

]

Q

.

Thus, 0 = a11b11a11 and 0 = a11b12a22. The invertibility of a11 in the subalgebra
qA q and b11 ∈ qA q ensure b11 = 0. In a similar way we have b12a22 = 0. Using
ab2 = 0 leads to a2b

2
2 = 0. Hence a11b12b21 = 0 and a11b12b22 = 0. The invertibility

of a11 (in qA q) leads to b12b21 = 0 and b12b22 = 0. Now let us define

x =

[

0 b12
0 0

]

Q

and y =

[

a11 0
b21 a22 + b22

]

Q

(2.19)

From (2.18) and b11 = 0 one trivially gets a2 + b2 = x + y. From b12b21 = 0,
b12a22 = 0, and b12b22 = 0 we have xy = 0.

Let us prove

a+ b ∈ A
d ⇐⇒ a22 + b22 ∈ [(1− p− q)A (1− p− q)]d. (2.20)

⇒: Assume that a+ b ∈ A d, then by the representations given in (2.2) we have
that a2 + b2 ∈ [(1 − p)A (1 − p)]d, i.e., a2 + b2 = x + y ∈ [(1 − p)A (1 − p)]d. We
can apply Lemma 1.4 to y = −x+(x+ y) because −x ∈ A d (since (−x)2 = 0) and
−x(x+ y) = 0 obtaining y ∈ A d. Lemma 1.5 and the representation of y in (2.19)
ensure that a22 + b22 is generalized Drazin invertible.

⇐: Assume in this paragraph that a22 + b22 is generalized Drazin invertible.
By recalling that a11 is invertible in the subalgebra qA q, the representation of y
in (2.19) leads to y ∈ [(1 − p)A (1 − p)]d. Since x2 = 0, xy = 0, and x + y =
a2 + b2, Lemma 1.4 yields a2 + b2 ∈ [(1 − p)A (1 − p)]d. Now, Lemma 1.5 and the
representation of a+ b in (2.2) ensure that a+ b ∈ A d.

Our next goal is to express the right side of the equivalence (2.20) in terms of a
and b. To this end, let us define R = {p, q, 1− q − p}, which is easy to see that it
is a total system of idempotents in A . First we notice that

aπ2 (a2 + b2) =





p 0 0
0 0 0
0 0 1− p− q





R





0 0 0
0 a11 + b11 b12
0 b21 a22 + b22





R

=





0 0 0
0 0 0
0 (1− p− q)a21 a22 + b22





R

, (2.21)

which, in view of Lemma 1.5, ensures that a22+ b22 is generalized Drazin invertible
if and only if aπ2 (a2 + b2) is generalized Drazin invertible. Now, we shall use (2.4),
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b1 ∈ pA p, a1 ∈ pA (1− p), and a2, b2 ∈ (1− p)A (1− p),

aπ(a+ b) =

[

p −a1a
d
2

0 aπ2 − p

]

P

[

b1 a1
0 a2 + b2

]

P

=

[

b1 a1 − a1a
d
2(a2 + b2)

0 aπ2 (a2 + b2)

]

P

,

bπaπ(a+b) =

[

0 0
0 1− p

]

P

[

b1 a1 − a1a
d
2(a2 + b2)

0 aπ2 (a2 + b2)

]

P

=

[

0 0
0 aπ2 (a2 + b2)

]

P

,

and

aπbπ(a+ b) =

[

p −a1a
d
2

0 aπ2 − p

]

P

[

0 0
0 1− p

]

P

[

b1 a1
0 a2 + b2

]

P

=

[

0 −a1a
d
2(a2 + b2)

0 aπ2 (a2 + b2)

]

P

,

an appealing to Lemma 1.5, leads to

aπ2 (a2+b2) ∈ A
d ⇐⇒ aπ(a+b) ∈ A

d ⇐⇒ bπaπ(a+b) ∈ A
d ⇐⇒ aπbπ(a+b) ∈ A

d.

We shall prove the second part of the Theorem. Since

bπab =

[

0 0
0 1− p

]

P

[

0 a1
0 a2

]

P

[

b1 0
0 b2

]

P

=

[

0 0
0 a2b2

]

P

= a2b2

and

bπba =

[

0 0
0 1− p

]

P

[

b1 0
0 b2

]

P

[

0 a1
0 a2

]

P

=

[

0 0
0 b2a2

]

P

= b2a2,

then

bπab = 0 or bπba = 0 or bπab = bπba ⇒ a2b2 = 0 or b2a2 = 0 or a2b2 = b2a2.

The representations given in (2.18) lead to

a2b2 = 0 or b2a2 = 0 or a2b2 = b2a2 ⇒ a22b22 = 0 or b22a22 = 0 or a22b22 = b22a22.

Since a22 and b22 are quasinilpotent, then the above implications and Lemma 1.6
lead to

bπab = 0 or bπba = 0 or bπab = bπba ⇒ a22 + b22 is quasinilpotent.

In particular, by employing equivalence (2.20) we get that a+b ∈ A d. Furthermore,
by using Lemma 1.4, x2 = 0, and xy = 0, one gets

(a2 + b2)
d = (x+ y)d = yπ

∞
∑

n=0

yn(xd)n+1 +
∞
∑

n=0

(yd)n+1xnxπ = yd + (yd)2x.

From (2.19) and Lemma 1.5 we get

yd =

[

ad11 0
u (a22 + b22)

d

]

Q

=

[

ad11 0
u 0

]

Q

,

where

u =
∞
∑

n=0

(a22 + b22)
nb21(a

d
11)

n+2. (2.22)

So

(yd)2x =

[

ad11 0
u 0

]

Q

[

ad11 0
u 0

]

Q

[

0 b12
0 0

]

Q

=

[

0 (ad11)
2b12

0 uad11b12

]

Q

. (2.23)
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In view of (2.2) and (2.18) it is simple to obtain bπad = ad2 = ad11 and bπ(ad)2 =
(ad2)

2 = (ad11)
2. We have

a+ baπ =

[

0 a1
0 a2

]

P

+

[

b1 0
0 b2

]

P

[

p −a1a
d
2

0 aπ2 − p

]

P

=

[

b1 a1 − b1a1a
d
2

0 a2 + b2a
π
2

]

P

.

By Lemma 1.1, there exists a sequence (wn)
∞
n=0 in A such that

(a+ baπ)n =

[

bn1 wn

0 (a2 + b2a
π
2 )

n

]

P

and thus, bπ(a+ baπ)n = (a2 + b2a
π
2 )

n. But another appealing to Lemma 1.1 and
some computations as in (2.21) lead to (1 − p − q)(a2 + b2a

π
2 )

n = (a22 + b22)
n.

Observe that (2.4) yields bπaπ = aπ2 − p = 1 − q − p. Thus bπaπbπ(a + baπ)n =
(a22 + b22)

n. In view of (2.18) and b11 = 0 we get b21 = b2q. But, it is simple to
prove bπaad = a2a

d
2 = q and b2 = bbπ. Hence b21 = bbπbπaad = bbπaad. Moreover,

(ad11)
k = (ad2)

k = bπ(ad)k holds for any k ∈ N in view of Lemma 1.1. If we take into
account that adbπ = ad holds, then (2.22) becomes

u = bπaπbπ
∞
∑

n=0

(a+ baπ)nbbπa(ad)n+3 = bπaπbπ
∞
∑

n=0

(a+ baπ)nbbπ(ad)n+2. (2.24)

From b11 = 0, (2.18), and adbπ = ad we have b12 = qb2 = bπaadbπb = bπaadb. This
observation allows us to simplify the entries of (yd)2x given in (2.23):

(ad11)
2b12 =

[

bπ(ad)2
] [

bπaadb
]

= bπ(ad)2b

and

uad11b12 =

[

bπaπbπ
∞
∑

n=0

(a+ baπ)nbbπ(ad)n+2

]

[

bπad
] [

bπaadb
]

= uadb.

Therefore,

(a2+b2)
d = yd+(yd)2x = ad11+u+(ad11)

2b12+uad11b12 = bπad+u+bπ(ad)2b+uadb.
(2.25)

By Lemma 1.5,

(a+ b)d =

[

bd1 v
0 (a2 + b2)

d

]

P

, (2.26)

where

v =

∞
∑

n=0

(bd1)
n+2a1(a2 + b2)

naπ2 +

∞
∑

n=0

bπ1 b
n
1a1[(a2 + b2)

d]n+2 − bd1a1(a2 + b2)
d.

Since bd1 = bd, a1 = bbda, (a2 + b2)
n = bπ(a + b)n, a2, b2 ∈ (1 − p)A (1 − p),

aπ2 = p+ bπaπ, abπ = a, adbπ = ad and ubπ = u (this last equality is obtained from
(2.24)) we have

(a2 + b2)
π = 1− (a2 + b2)

d(a2 + b2)

= 1− (bπad + u+ bπ(ad)2b+ uadb)bπ(a+ b)

= 1− (bπad + u+ bπ(ad)2b+ uadb)(a+ b)

and

(bd1)
n+2a1(a2 + b2)

n(a2 + b2)
π = (bd)n+2bbdabπ(a+ b)n(a2 + b2)

π

= (bd)n+2a(a+ b)n(a2 + b2)
π.
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As is easy to see, bπ1 b
n
1 = 0 for any n ≥ 1. Moreover, bπ1a1 = bπ(bbda) = bπ(1−bπ)a =

0, and bd1a1a
d
2 = (bd)(bbda)(bπad) = bdaad. Thus, v reduces to

v =

∞
∑

n=0

(bd)n+2a(a+ b)n[1− s(a+ b)]− bdaad, (2.27)

where s = bπad + u + bπ(ad)2b + uadb. Expressions (2.25)–(2.27) allow finish the
proof. �
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