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COMMON FIXED POINT RESULTS FOR ψ - φ CONTRACTIONS

IN RECTANGULAR METRIC SPACES

(COMMUNICATED BY SIMEON REICH)

RENY GEORGE1,2, RAJAGOPALAN R1,3

Abstract. In this paper we obtain common fixed point theorems for two self
maps satisfying certain ψ − φ contractive conditions in a rectangular metric
space. Our results includes recent results of Lakzian and Samet [17], Inci
etal[15] and many others.

1. Introduction

Since the introduction of Banach contraction principle in 1922, the study of
existence and uniqueness of fixed points and common fixed points has become a
subject of great interest. Many authors proved the Banach contraction Principle in
various generalised metric spaces. In the sequel Branciari introduced the concept
of rectangular metric space (RMS) by replacing the sum of the right hand side of
the triangular inequality in metric space by a three-term expression and proved an
analog of the Banach Contraction Principle. Since then many fixed point theorems
for various contractions on rectangular metric spaces appeared. (see [2, 3, 4, 6,
7, 8, 9]). In 1969 Boyd and Wong[5] introduced the concept of φ contraction
mappings and in 1997 Albet etal[1] generalised this concept by introducing weak φ
contractions. Recently Lakzian and Samet[12] proved fixed point theorem for (ψ,
φ) weakly contractive mappings on rectangular metric spaces, which was further
generalised by Inci etal[10].

In this paper we have proved common fixed point theorems for two self maps
satisfying ψ−φ contractive conditions in a rectangular metric space. Simple exam-
ples given shows that our results include more mappings than that of Lakzian and
Samet[12] and Inci etal[10]. We have also applied our results to prove the existence
of common fixed points of two mappings satisfying certain contractions of integral
type.
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Submitted November 7, 2012. Published January 27, 2013.
Corresponding Author : Reny George

44



COMMON FIXED POINT RESULTS FOR ψ - φ CONTRACTIONS.... 45

2. Preliminaries

Definition 2.1. [4] Let X be a non empty set. Suppose that the mapping d :
X ×X → [0, ∞) satisfies :
(rm1) d(x, y) = 0 if and only if x = y

(rm2) d(x, y) = d(y, x) for allx, y ∈ X

(rm3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, u, v, y ∈ X

Then d is called a rectangular metric on X and (X ,d) is called a rectangular
metric space (in short RMS).

Definition 2.2. Let (X,d) be a rectangular metric space and {xn} be a sequence
in X.
(a)The sequence {xn} is said to be RMS − convergent to x ∈ X if and only if
d(xn, x)→ 0 as n→ ∞. (b)The sequence {xn} is said to be RMS-Cauchy sequence
if and only if for every ǫ ≥ 0, there exists a poitive integer N(ǫ) such that d(xn,
xm) < ǫ for all n ≥ m ≥ N(ǫ). (c) A RMS (X, d) is called complete, if every
RMS − Cauchy sequence in X is RMS − convergent.

Definition 2.3. Let T : X → X and S : X → X be mappings Mappings in (X, d).
An element x ∈ X is said to be a coincidence point of S and T iff Sx = Tx = u

and a common fixed point iff Sx = Tx = x. u is called the point of coincidence of
S and T The set of coincidence points of S and T is denoted by C(S, T ). S and
T are said to be weakly compatible if and only if they commute at all coincidence
points.

3. Main results

Let Ψ denote set of all continuous functions Ψ: [0,∞) → [0, ∞) for which
Ψ(t) = 0 if and only if t = 0. Non decreasing functions which belong to the class Ψ
are also known as altering distance functions.(see [11]). Now we present our main
results as follows :

Theorem 3.1. Let (X, d) be a Hausdorff and complete RMS and let S, T : X → X

be mappings satisfying the following conditions:

T (X) ⊆ S(X) (3.1)

ψ(d(Tx, T y)) ≤ ψ(M(x, y)− φ(M(x, y) + Lm(x, y) (3.2)

for all x,y ∈ X, ψ, φ ∈ Ψ, L ≥ 0, the function ψ is non decreasing and

M(x, y) = max{d(Sx, Sy), d(Sx, Tx), d(Sy, T y)} (3.3)

m(x, y) = min{d(Sx, Tx) + d(Sy, T y), d(Sx, T y), d(Sy, Tx)} (3.4)

Then C(S, T ) 6= ∅ and the point of coincidence is unique. Further, if S,T are weakly
compatible, then S and T has a unique common fixed point.

Proof : Let x0 be any arbitary point in X . Let us define the sequence {yn}
⊂ X as Txn−1 = Sxn = yn, for n= 1,2,3,... If yn = yn+1 for all n, then {yn}
is a constant sequence and thus convergent.. Suppose yn 6= yn+1 for all n. Then
ψ(d(yn, yn+1)) = ψ(d(Txn−1, T xn))

≤ ψ(M(xn−1, xn))− φ(M(xn−1, xn)) + L(m(xn−1, xn)) (3.5)

m(xn−1, xn) = min{d(Sxn−1, T xn−1) + d(Sxn, T xn), d(Sxn−1, T xn), d(Sxn, T xn−1)}

= min{d(yn−1, yn) + d(yn, yn+1), d(yn−1, yn+1), d(yn, yn)} = 0.
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Also

M(xn−1, xn) = max{d(Sxn−1, Sxn), d(Sxn−1, T xn−1), d(Sxn, T xn)}

= max{d(yn−1, yn), d(yn−1, yn), d(yn, yn+1)}

= max{d(yn−1, yn), d(yn, yn+1)}

Suppose, M(xn−1, xn) = d(yn, yn+1), then 3.5 becomes

ψ(d(yn, yn+1)) ≤ ψ(d(yn, yn+1))− φ(d(yn, yn+1)) + 0

⇒ φ(d(yn, yn+1)) = 0

⇒ d(yn, yn+1) = 0

which is a contradiction to our assumption (yn 6= yn+1). Therefore,M(xn−1, xn) =
d(yn−1, yn). From 3.5 we have

ψ(d(yn, yn+1)) ≤ ψ(d(yn, yn−1))− φ(d(yn, yn−1)) (3.6)

ψ(d(yn, yn+1)) ≤ ψ(d(yn, yn−1))

⇒ d(yn, yn+1) ≤ d(yn−1, yn)for all n ≥ 1.

i.e. d(yn, yn+1) is decreasing sequence of positive terms and so converges to some
c ≥ 0, i.e. limn→∞d(yn, yn+1) = c. As , n→ ∞, 3.6 becomes,
ψ(c) ≤ ψ(c)− φ(c) ⇒ φ(c) = 0 ⇒ c = 0 Thus,

limn→∞d(yn, yn+1) = 0 (3.7)

Now we shall prove that {yn} is RMS-Cauchy sequence. If not let us assume
otherwise. Then there exist ǫ > 0, subsequences {yn(i)} and {ym(i)} of {yn},
n(i) > m(i) > i such that,

d(ym(i), yn(i)) ≥ ǫ (3.8)

where n(i) is the smallest postive integer, satisfying (3.8), i.e.

d(ym(i), yn(i)−1) < ǫ (3.9)

Using Rectangular Inequality of RMS in 3.8 we have,

ǫ ≤ d(ym(i), yn(i))

≤ d(ym(i), yn(i)−2) + d(yn(i)−2, yn(i)−1) + d(yn(i)−1, yn(i))

≤ ǫ+ d(yn(i)−2, yn(i)−1) + d(yn(i)−1, yn(i)).

As i→ ∞ and using 3.7 we get ǫ ≤ d(ym(i), yn(i)) ≤ ǫ, i.e. limi→∞d(ym(i), yn(i)) =
ǫ. Also, d(yn(i), ym(i)) ≤ d(yn(i), yn(i)−1) + d(yn(i)−1, ym(i)−1) + d(ym(i)−1, ym(i))
and d(yn(i)−1, ym(i)−1) ≤ d(yn(i)−1, yn(i)) + d(yn(i), ym(i)) + d(ym(i), ym(i)−1)
As i→ ∞ we get

ǫ ≤ d(yn(i)−1, ym(i)−1) ≤ ǫ

⇒ limi→∞d(yn(i)−1, ym(i)−1) = ǫ

Now using 3.2 we have

ψ(d(yn(i), ym(i))) = ψ(d(Txn(i)−1, T xm(i)−1))

≤ ψ(M(xn(i)−1, xm(i)−1))− φ(M(xn(i)−1, xm(i)−1)) + L(m(xn(i)−1, xm(i)−1))
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m(xn(i)−1, xm(i)−1) = min{d(Sxn(i)−1, T xn(i)−1) + d(Sxm(i)−1, T xm(i)−1), d(Sxn(i)−1, T xm(i)−1),

d(Sxm(i)−1, T xn(i)−1)}

= min{d(yn(i)−1, yn(i)) + d(ym(i)−1, ym(i)), d(yn(i)−1, ym(i)), d(ym(i)−1, yn(i))}

m(xn(i)−1, xm(i)−1) → 0 as i→ ∞

M(xn(i)−1, xm(i)−1) = max{d(Sxn(i)−1, Sxm(i)−1), d(Sxn(i)−1Txn(i)−1), d(Sxn(i)−1, T xm(i)−1)}

= max{d(yn(i)−1, ym(i)−1), d(yn(i)−1, yn(i)), d(yn(i)−1, ym(i))

= max{ǫ, 0, ǫ} = ǫ.

Thus we have,

ψ(ǫ) ≤ ψ(ǫ)− φ(ǫ)

⇒ φ(ǫ) = 0 ⇒ ǫ = 0

This is contradiction to our assumption that ǫ > 0. Therefore, {yn} is RMS-
Cauchy sequence. Since (X, d) is complete, {yn} converges to a limit say u ∈ X .
Thus we have, limn→∞Sxn = limi→∞Txn = z. Since SX is closed subset of X ,
limn→∞Sxn = z ∈ S(X). Therefore there exist u ∈ X such that Su = z. Now we
claim Su = Tu = z. By 3.2

ψ(d(Tu, Txn)) ≤ ψ(M(u, xn))− φ(M(u, xn)) + Lm(u, xn) (3.10)

M(u, xn) = max{d(Su, Sxn), d(Su, Tu), d(Sxn, T xn)}

As n→ ∞ we have,

M(u, xn) = max{d(z, z), d(z, Tu), d(z, z)} = d(z, Tu)

Also

m(u, xn) = min{d(Su, Tu) + d(Sxn, T xn), d(Su, Txn), d(Sxn, T u)}

As n→ ∞ we get,

m(u, xn) = min{d(z, Tu) + d(z, z), d(z, z), d(z, Tu)} = 0

Therefore, as n→ ∞ 3.10 reduces to

ψ(d(Tu, Txn)) = ψ((d(Tu, z)) ≤ ψ(d(z, Tu))− φ(d(z, Tu)) + 0

⇒ φ(d(z, Tu)) = 0 ⇒ d(z, Tu) = 0 ⇒ Tu = z.

Thus we have Su = Tu = z, i.e. C(S, T ) 6= ∅ and z is a point of coincidence.
We claim that z is the unique point of coincidence. Suppose w ∈ X such that
w = Sv = Tv for some v ∈ X . Then

ψ(d(z, w)) = ψ(d(Tu, T v))

≤ ψ(M(u, v))− φ(M(u, v)) + Lm(u, v)

M(u, v) =Max{d(Su, Sv), d(Su, Tu), d(Sv, T v)} = d(z, w).

m(u, v) =Min{d(Su, Tu) + d(Sv, T v), d(Su, T v), d(Sv, Tu)} = 0.

Thus we have

ψ(d(z, w)) ≤ ψ(d(z, w)) − φ(d(z, w))

⇒ φ(d(z, w)) = 0i.e. z = w.

If the mappings S and T are weak compatible, we have, STu = TSu = z ⇒ Sz =
Tz. Since z is the unique point of coincidence we have Sz = Tz = z. Thus z is the
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fixed point of S and T . Now we claim the fixed point is unique. If not we assume
that there exist another fixed point v such that Sv = Tv = v. Then,

ψ(d(z, v)) = ψ(d(Tz, T v)) ≤ ψ(M(z, v)− φ(M(z, v) + Lm(z, v) (3.11)

M(z, v) = max{d(Sz, Sv), d(Sz, T z), d(Sv, T v)}

= max{d(z, v), d(z, v), d(z, z)} = d(z, v).

m(z, v) = min{d(Sz, T z) + d(Sv, T v), d(Sz, T v), d(Sv, T z)}

= min{d(z, z) + d(v, v), d(z, v), d(v, z)} = 0.

Therefore, 3.11 reduces to

ψ(d(Tz, T v)) = ψ((d(z, T v)) ≤ ψ(d(z, v)) − φ(d(z, v)) + 0

⇒ φ(d(z, v)) = 0 ⇒ d(z, v) = 0 ⇒ z = v.

Taking S = Id (the Identity Mapping) in Theorem (3.1) we have the following:

Corollary 3.2. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

be a self-map satisfying

ψ(d(Tx, T y)) ≤ ψ(M(x, y)− φ(M(x, y) + Lm(x, y) (3.12)

for all x,y ∈ X, ψ, φ ∈ Ψ, L ≥ 0, the function ψ is nondecreasing and

M(x, y) = max{d(x, y), d(x, Tx), d(y, T y)} (3.13)

m(x, y) = min{d(x, Tx) + d(y, T y), d(x, T y), d(y, Tx)} (3.14)

Then T has a unique fixed point in X.

Example 3.3. Let X = A
⋃

B, where A = {0, 12 ,
1
3 ,

1
4 ,

1
5 ,

1
6} and B = [1,2]. Define

d : X ×X → R as under:
d(0, 12 ) = d(13 ,

1
4 ) = d(15 ,

1
6 ) = 0.3, d(0, 13 ) = d(12 ,

1
5 ) = d(14 ,

1
5 ) = 02,

d(0, 14 ) = d(12 ,
1
3 ), d(

1
4 ,

1
6 ) = 0.4, d(0, 15 ) = d(12 ,

1
6 = d(13 ,

1
6 ) = 0.5

d(0, 16 ) = d(12 ,
1
4 ) = d(13 ,

1
5 ) = 0.6

d(0, 0) = d(12 ,
1
2 ) = d(13 ,

1
3 ) = d(14 ,

1
4 ) = d(15 ,

1
5 ) = d(16 ,

1
6 )= 0

and d(x, y) = | x− y |, if x, y ∈ B OR x ∈ A, y ∈ B.
Clearly d is a rectangular metric. However d(13 ,

1
5 ) = 0.6 > d(13 ,

1
4 ) + d(14 ,

1
5 ) =

0.5 and so d is not a usual metric. Define S and T by

Sx =











1
5 , x ∈ [1, 2]
1
2 − x, x ∈ {0, 12 ,

1
3 ,

1
4 ,

1
6}

1
3 , x = 1

5

Tx =











1
5 , x ∈ [1, 2]
1
4 , x ∈ {0, 12 ,

1
3 ,

1
4 ,

1
6}

1
3 , x = 1

5 .

Let ψ(t) = t and φ(t) = t
3 . Then S and T satisfies all the conditions of Theorem

(3.1) and 1
4 is the unique common fixed point.

Remark 3.4. The following example shows that Corollary 3.2 includes more map-
pings than Theorem 3.1 of [10] and Theorem 4 of [12].

Example 3.5. Let X = A
⋃

B, where A = {0, 12 ,
1
3 ,

1
4 ,

1
5 ,

1
6} and B = [1,2]. Define

d : X ×X → R as under:
d(0, 12 ) = d(13 ,

1
4 ) = d(15 ,

1
6 ) = 0.6, d(0, 13 ) = d(12 ,

1
5 ) = d(14 ,

1
5 )=02,

d(0, 14 ) = d(12 ,
1
3 ), d(

1
4 ,

1
6 )=0.4, d(0, 15 ) = d(12 ,

1
6 = d(13 ,

1
6 )=0.5

d(0, 16 ) = d(12 ,
1
4 ) = d(13 ,

1
5 )=0.3

d(0, 0) = d(12 ,
1
2 ) = d(13 ,

1
3 ) = d(14 ,

1
4 ) = d(15 ,

1
5 ) = d(16 ,

1
6 )= 0
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and d(x, y) = | x− y |, if x, y ∈ B OR x ∈ A, y ∈ B.
Clearly d is a rectangular metric but not a metric as , d(13 ,

1
4 ) = 0.6 > d(13 ,

1
5 ) +

d(15 ,
1
4 ) = 0.5. Define T by

Tx =











1
5 , x ∈ [1, 2]
1
2 − x, x ∈ {0, 12 ,

1
3 ,

1
4 ,

1
6}

1
3 , x = 1

5

Then T satisfies all the conditions of Corollary 3.2 and 1
4 is the unique fixed point.

However T does not satisfy Theorem 3.1 of [10] and Theorem 4 of [12] at x = 1
5

and x = 1
4 as, d(Tx, T y) = d(13 ,

1
4 = 0.6

M(x, y) = Max{d(x, y), d(x, Tx), d(y, T y)}

= Max{d(
1

5
,
1

4
), d(

1

5
,
1

3
), d(

1

4
,
1

4
)}

= Max{0, 2, 0.3, 0} = 0.3.

m(x, y) = min{d(x, y), d(x, Tx), d(y, T y), d(y, Tx)}

= min{d(
1

5
,
1

4
), d(

1

5
,
1

3
), d(

1

4
,
1

3
), }

= min{0.2, 0.3, 0, 0.6}= 0

Next we prove fixed point results of ψ−φ contractions involving rational expres-
sions.

Theorem 3.6. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

be a self-map satisfying the following:

T (X) ⊆ S(X) (3.15)

ψ(d(Tx, T y)) ≤ ψ(M(x, y))− φ(M(x, y)) + Lm(x, y) (3.16)

for all x,y ∈ X and ψ, φ ∈ Ψ where L ≥ 0, the function ψ is non decreasing and

M(x, y) = max{d(Sx, Sy), d(Sy, T y)
1 + d(Sx, Tx)

1 + d(Sx, Sy)
} (3.17)

m(x, y) = min{d(Sx, Tx), d(Sx, T y), d(Sy, Tx)} (3.18)

Then S, T has a unique fixed point in X.

Proof Let x0 be any arbitary point in X . Let us define the sequence {yn} ⊂ X

as Txn−1 = Sxn = yn, for n= 1,2,3,... Assume yn 6= yn+1 = Txn for all n ≥ 1.
Then we have

ψ(d(yn, yn+1)) = ψ(d(Txn−1, T xn))

≤ ψ(M(xn−1, xn))− φ(M(xn−1, xn)) + L(m(xn−1, xn))

M(xn−1, xn) = max{d(Sxn−1, Sxn), d(Sxn, T xn)
1 + d(Sxn−1, T xn−1)

1 + d(Sxn−1, T xn−1)
}

= max{d(yn−1, yn), d(yn, yn+1)
1 + d(yn−1, yn)

1 + d(yn−1, yn)
}

= max{d(yn−1, yn), d(yn, yn+1)}.

Rest of the proof can be obtained by following the steps in Theorem 3.1.
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Taking S to be Identity Mapping and L = 0 in the Theorem 3.6 we have

Corollary 3.7. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

be a self-map satisfying

ψ(d(Tx, T y)) ≤ ψ(M(x, y)) − φ(M(x, y)) (3.19)

for all x,y ∈ X, ψ, φ ∈ Ψ, the function ψ is non decreasing and

M(x, y) = max{d(x, y), d(y, T y)
1 + d(x, Tx)

1 + d(x, y)
} (3.20)

Then T has a unique fixed point in X.

Taking ψ(t) = t and φ(t) = (1 − k)t in Corollary 3.7 we have

Corollary 3.8. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

be a self-map satisfying

d(Tx, T y)) ≤ kmax{d(x, y), d(y, T y)
1 + d(x, Tx)

1 + d(x, y)
} (3.21)

for all x, y ∈ X and k ∈ [0, 1). Then T has a unique fixed point in X.

4. Applications

In this section we apply our results to prove fixed points of certain contrations
of integral type.
Let ∧ be the set of functions f : [0,∞) → [0,∞) such that:
(a) f is Lebesgue Integrable on each compact subset of [0,∞)
(b)

∫ ǫ

0
f(t)dt > 0 for every ǫ > 0.

Theorem 4.1. Let (X, d) be a Hausdorff and complete RMS, S, T : X → X be
mappings satisfying the following conditions:

T (X) ⊆ S(X) (4.1)
∫ d(Tx,Ty)

0

f(t)dt ≤

∫ M(x,y)

0

f(t)dt−

∫ M(x,y)

0

g(t)dt+ Lm(x, y) (4.2)

for all x, y ∈ X, f, g ∈ ∧, L ≥ 0, M(x, y) and m(x, y) as given in Theorem (3.1).
Then S and T has a coincidence point, i.e. C(S, T ) 6= ∅. Further, if S,T are weakly
compatible, then S and T has a unique fixed point.

Proof Let ψ(t) =
∫ t

0
f(u)du and φ(t) =

∫ t

0
g(u)du. Then ψ and φ are functions

of class Ψ and moreover the function ψ is non-decreasing. By Theorem 3.1 S, T
has a unique fixed point.

Taking g(t) = (1− k)f(t) in Theorem 4.1 we have

Corollary 4.2. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

and S : X → X be mappings satisfying the following conditions:

T (X) ⊆ S(X) (4.3)
∫ d(Tx,Ty)

0

f(t)dt ≤ k

∫ M(x,y)

0

f(t)dt+ Lm(x, y) (4.4)
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for all x, y ∈ X, f ∈ ∧, 0 ≤ k < 1, L ≥ 0, M(x, y) and m(x, y) as given in Theorem
(3.1). Then S and T has a coincidence point, i.e. C(S, T ) 6= ∅. Further, if S,T
are weakly compatible, then S and T has a unique fixed point.

Taking S as Identity Mapping in Theorem 4.1 we have

Corollary 4.3. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

be mapping satisfying the following conditions:
∫ d(Tx,Ty)

0

f(t)dt ≤

∫ M(x,y)

0

f(t)dt−

∫ M(x,y)

0

g(t)dt+ Lm(x, y) (4.5)

for all x, y ∈ X, f ∈ ∧, L ≥ 0, M(x, y) and m(x, y) as given in Corollary (3.2).
Then T has a unique fixed point in X.

Taking g(t) = (1− k)f(t) in Corollary 4.3 we have

Corollary 4.4. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

be mapping satisfying the following conditions:
∫ d(Tx,Ty)

0

f(t)dt ≤ k

∫ M(x,y)

0

f(t)dt+ Lm(x, y) (4.6)

for all x, y ∈ X, f ∈ ∧, 0 ≤ k < 1, L ≥ 0, M(x, y) and m(x, y) as defined in
Corollary (3.2). Then T has a coincidence point in X.

Theorem 4.5. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

and S : X → X be mappings satisfying the following conditions:

T (X) ⊆ S(X) (4.7)
∫ d(Tx,Ty)

0

f(t)dt ≤

∫ M(x,y)

0

f(t)dt−

∫ M(x,y)

0

g(t)dt+ Lm(x, y) (4.8)

for all x, y ∈ X, f, g ∈ ∧, L ≥ 0

M(x, y) = max{d(Sx, Sy), d(Sy, T y)
1 + d(Sx, Tx)

1 + d(Sx, Sy)
} (4.9)

m(x, y) = min{d(Sx, Tx), d(Sx, T y), d(Sy, Tx)} (4.10)

Then S, T has a unique common fixed point in X.

Proof Let ψ(t) =
∫ t

0
f(u)du and φ(t) =

∫ t

0
g(u)du. Then ψ and φ are functions

of Ψ and moreover the function ψ is non-decreasing. By Theorem 3.6 S, T has a
unique fixed point.

By taking S as identity mapping in Theorem 4.5 we have.

Corollary 4.6. Let (X, d) be a Hausdorff and complete RMS and let T : X → X

a self mapping satisfying the following conditions:
∫ d(Tx,Ty)

0

f(t)dt ≤

∫ M(x,y)

0

f(t)dt−

∫ M(x,y)

0

g(t)dt+ Lm(x, y) (4.11)

for all x, y ∈ X, f, g ∈ ∧, L ≥ 0

M(x, y) = max{d(x, y), d(y, T y)
1 + d(x, Tx)

1 + d(x, y)
} (4.12)

m(x, y) = min{d(x, Tx), d(x, T y), d(y, Tx)} (4.13)

Then T has a unique fixed point in X.
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