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REMARKS ON COUPLED FIXED POINT THEOREMS IN
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(COMMUNICATED BY PROFESSOR S. MECHERI)

ERDAL KARAPINAR

Abstract. In this manuscript, we prove new coupled fixed point theorems
extending some recent results in the literature on this topic. We also present
applications of these new results through a number of examples.

1. Introduction and Preliminaries

Since 1922, Banach contraction mapping principle, considered as one of the cor-
nerstones of the fixed point theory, has been in the center of long lasting fascination
among the mathematicians interested in many branches of mathematics, especially
in nonlinear analysis (see e.g. [1]-[30]). One of the analogs of this celebrated prin-
ciple in the context of partially ordered metric spaces was first proved by Ran
and Reurings [26]. Following this initial paper, many authors produced remarkable
results in this direction (see e.g. [1]-[30]). Particularly, Gnana-Bhaskar and Lak-
shmikantham [5] introduced the notions of mixed monotone property and coupled
fixed point in the context of partially ordered metric spaces. In this intriguing pa-
per, they additionally discussed the existence and uniqueness of coupled fixed point
and certain applications on periodic boundary value problems. Because of these
effective applications on differential equations, their paper attracted considerable
attention (see e.g. [2]-[18], [21]-[23],[27]-[30]).

We start with listing some notation and main definitions on these topics that we
shall need to convey our theorems.

Definition 1. (See [5]) Let (X,≤) be a partially ordered set and F : X×X → X be
a mapping. Then F is said to have mixed monotone property if F (x, y) is monotone
non-decreasing in x and is monotone non-increasing in y, that is, for any x, y ∈ X,

x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y), for x1, x2 ∈ X, and

y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1), for y1, y2 ∈ X.
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Definition 2. (see [5]) An element (x, y) ∈ X × X is said to be a coupled fixed
point of the mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

Throughout this paper, (X, d,≤) denotes a partially ordered metric space where
(X,≤) is a partially ordered set and (X, d) is a metric space for a given metric d
on X . Furthermore, the product space X ×X satisfies the following comparability
property:

(u, v) ≤ (x, y) ⇔ u ≤ x, y ≥ v; for all (x, y), (u, v) ∈ X ×X. (1.1)

Hereafter, we assume that X 6= ∅ and use the notation X2 = X × X . Then the
mapping ρ2 : X2 ×X2 → [0,+∞) defined by

ρ2(x,y) = max{d(x1, y1), d(x2, y2)}

forms a metric on X2 where x = (x1, x2) and y = (y1, y2) are in X2.
Motivated by Definition 1, the following concept of a g-mixed monotone mapping

is introduced by V. Lakshmikantham and L.Ćirić [21].

Definition 3. Let (X,≤) be a partially ordered set and F : X × X → X and
g : X → X be two mappings. Then F is said to have mixed g-monotone property
if F (x, y) is monotone g-non-decreasing in x and is monotone g-non-increasing in
y, that is, for any x, y ∈ X,

g(x1) ≤ g(x2) ⇒ F (x1, y) ≤ F (x2, y), for x1, x2 ∈ X, and (1.2)

g(y1) ≤ g(y2) ⇒ F (x, y2) ≤ F (x, y1), for y1, y2 ∈ X. (1.3)

It is clear that Definition 3 reduces to Definition 1 when g is the identity.

Definition 4. An element (x, y) ∈ X ×X is called a coupled coincidence point of
a mapping F : X ×X → X and g : X → X if

F (x, y) = g(x), F (y, x) = g(y).

Moreover, (x, y) ∈ X ×X is called a common coupled coincidence point of F and
g if

F (x, y) = g(x) = x, F (y, x) = g(y) = y.

Definition 5. Let F : X × X → X and g : X → X be mappings where X 6= ∅.
The mappings F and g are said to commute if

g(F (x, y)) = F (g(x), g(y)), for all x, y ∈ X.

Definition 6. (See e.g. [14]) The mappings F and g where F : X × X → X,
g : X → X are said to be compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0

and
lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0
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where {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x

and lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y for all x, y ∈ X are satisfied.

In this paper, we investigate the existence and uniqueness of a coupled coinci-
dence point of the Meir-Keeler type contraction mappings in the context of partially
ordered metric spaces. Our results enrich, improve and generalize some well-known
results in the literature. We give some examples to illustrate our results.

2. Existence of a Coupled Fixed Point

In this section, we aim to review a major theorem on coupled fixed points and
improve on it. In [27] Samet introduced the definition below to modify the Meir-
Keeler contraction and extended its applications.

Definition 7. Let (X, d,≤) be a partially ordered metric space and F : X×X → X

be a mapping. The operator F is said to be a generalized Meir-Keeler type function
if for all ε > 0 there exists a δ(ε) > 0 such that

ε ≤
1

2
[d(x, u) + d(y, v)] < ε+ δ(ε) ⇒ d(F (x, y), F (u, v)) < ε, (2.1)

for all x, y, u, v ∈ X with x ≤ u, y ≥ v.

Upon this definition, Samet [27] proved the following theorem.

Theorem 8. Let (X, d,≤) be a partially ordered complete metric space and F :
X2 → X be a mapping satisfying the following hypothesis:

(i) F is continuous,
(ii) F has the mixed strict monotone property,
(iii) F is a generalized Meir-Keeler type function,
(iv) there exist x0, y0 ∈ X such that

x0 < F (x0, y0), y0 ≥ F (y0, x0). (2.2)

Then, there exists (x, y) ∈ X ×X such that

F (x, y) = x, F (y, x) = y.

We first give a modified version of Definition 7 as follows.

Definition 9. Let (X, d,≤) be a partially ordered metric space and F : X×X → X

and g : X → X be two mappings. The operator F is said to be a generalized g-
Meir-Keeler type contraction if for any ε > 0 there exists a δ(ε) > 0 such that

ε ≤ max{d(g(x), g(u)), d(g(y), g(v))} < ε+ δ(ε)
⇒ max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} < ε,

(2.3)

for all x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v).

Remark 10. If we replace g with the identity in (2.3), we get the definition of
generalized Meir-Keeler type contraction, that is, for any ε > 0 there exists a δ(ε) >
0 such that

ε ≤ max{d(x, u), d(y, v)} < ε+δ(ε) ⇒ max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} < ε,

(2.4)
for all x, y, u, v ∈ X with x ≤ u, y ≥ v.
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The following fact can be derived easily from Definition 9.

Lemma 11. Let (X, d,≤) be a partially ordered metric space and F : X×X → X,
g : X → X. If F is a generalized g-Meir-Keeler type contraction, then we have

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} ≤ max{d(g(x), g(u)), d(g(y), g(v))}

for all x, y, u, v ∈ X with g(x) < g(u), g(y) ≥ g(v) or g(x) ≤ g(u), g(y) > g(v).

Proof. Without loss of generality, we assume that g(x) < g(u), g(y) ≥ g(v) where
x, y, u, v ∈ X . Thus, we have max{d(g(x), g(u)), d(g(y), g(v))} > 0. Set ε =
max{d(g(x), g(u)), d(g(y), g(v))} > 0. Since F is a g-Meir-Keeler type contraction,
then for this ε, there exits δ = δ(ε) > 0 such that

ε ≤ max{d(g(x0), g(u0)), d(g(y0), g(v0))} < ε+ δ

⇒ max{d(F (x0, y0), F (u0, v0)), d(F (y0, x0), F (v0, u0))} < ε,

for all x0, y0, u0, v0 ∈ X with g(x0) < g(u0), g(y0) ≥ g(v0). The result follows by
choosing x = x0, y = y0, u = u0, z = z0, that is,

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} < max{d(g(x), g(u)), d(g(y), g(v))}.

�

Very recently, Gordji at al. [16] replaced the mixed g-monotone property with
the mixed strict g-monotone property.

Definition 12. (See [16]) Let (X,≤) be a partially ordered set and F : X×X → X

and g : X → X be mappings. Then F is said to have the mixed strict g-monotone
property if F (x, y) is monotone g-increasing in x and is monotone g-decreasing in
y, that is, for any x, y ∈ X,

g(x1) < g(x2) ⇒ F (x1, y) < F (x2, y), for x1, x2 ∈ X, and (2.5)

g(y1) < g(y2) ⇒ F (x, y2) < F (x, y1), for y1, y2 ∈ X. (2.6)

If we replace g with the identity map in (2.5) and (2.6), we get the definition of
the mixed strict monotone property of F .

The following theorem is our first main result.

Theorem 13. Let (X, d,≤) be a partially ordered complete metric space and g :
X → X, F : X2 → X be mappings such that F (X × X) ⊂ X. Moreover, g is
continuous and F and g are compatible mappings. Suppose that F satisfies the
following conditions

(i) F is continuous,
(ii) F has the mixed g-strict monotone property,
(iii) F is a generalized g-Meir-Keeler type contraction,
(iv) there exist x0, y0 ∈ X such that

g(x0) < F (x0, y0), g(y0) ≥ F (y0, x0). (2.7)

Then F and g have a coupled coincidence point, that is, there exist x, y ∈ X such
that

F (x, y) = g(x), F (y, x) = g(y).
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Proof. Let (x, y) = (x0, y0) ∈ X2 such that g(x0) < F (x0, y0) and g(y0) ≥ F (y0, x0).
We construct the sequence {xn} and {yn} in the following way. Due to assump-
tion (iv), we are able to choose (x1, y1) ∈ X2 such that g(x1) = F (x0, y0) and
g(y1) = F (y0, x0). By repeating the same argument, we can choose (x2, y2) ∈ X2

such that g(x2) = F (x1, y1) and g(y2) = F (y1, x1). Inductively, we observe that

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) for all n = 0, 1, 2, · · · . (2.8)

We claim that

· · · > g(xn) > g(xn−1) > · · · > g(x2) > g(x1),
· · · < g(yn) < g(yn−1) < · · · < g(y2) < g(y1).

(2.9)

We shall use mathematical induction to show (2.9). By the assumption (iv), we
have

g(x0) < F (x0, y0) = g(x1), g(y0) ≥ F (y0, x0) = g(y1). (2.10)

Since F has a mixed strict g-monotone property, (2.10) implies that

g(x1) = F (x0, y0) < F (x1, y0) < F (x1, y1) = g(x2) and
g(y2) = F (y1, x1) > F (y1, x0) > F (y0, x0) = g(y1).

Suppose that the inequalities in (2.9) hold for some n ≥ 2. Regarding the mixed
g-strict monotone property of F , we have

g(xn−1) < g(xn) ⇒

{

F (xn−1, yn−1) < F (xn, yn−1),
F (yn−1, xn−1) > F (yn−1, xn).

By repeating the same arguments, we observe that

g(yn−1) > g(yn) ⇒

{

F (xn, yn−1) < F (xn, yn),
F (yn−1, xn) > F (yn, xn).

Combining the above inequalities, together with (2.8), we get that

g(xn) = F (xn−1, yn−1) < F (xn, yn) = g(xn+1),
g(yn) = F (yn−1, xn−1) > F (yn, xn) = g(yn+1).

(2.11)

So, (2.9) holds for all n ≥ 1. Set

∆n = max{d(g(xn), g(xn+1)), d(g(yn), g(yn+1))}. (2.12)

Taking Lemma 11 and (2.9) into the account, we get that

max{d(g(xn), g(xn+1)), d(g(yn), g(yn+1))}
= max{d(F (xn−1, yn−1), F (xn, yn)), d(F (yn−1, xn−1), F (yn, xn))}
< max{d(g(xn−1), g(xn)), d(g(yn−1), g(yn))}.

(2.13)
If we add the previous two inequalities side by side, we obtain that ∆n < ∆n−1.
Hence, {∆n} is a monotone decreasing sequence in IR. Since the sequence {∆n} is
bounded below, there exists θ ≥ 0 such that lim

n→∞

∆n = θ.

We prove θ = 0. Suppose on the contrary that θ 6= 0. Thus, there is a positive
integer k such that

ε ≤ ∆k = max{d(g(xk), g(xk+1)), d(g(yk), g(yk+1))} < ε+ δ(ε) (2.14)

where ε = θ.
Regarding the assumption (iii) we have

max{d(F (xk, yk), F (xk+1, yk+1)), d(F (yk, xk), F (yk+1, xk+1))} < ε



120 ERDAL KARAPINAR

which by (2.8) is equivalent to

max{d(g(xk+1), g(xk+2)), d(g(yk+1), g(yk+2))} < ε.

Hence, we obtain

∆k+1 < ε ≤ ∆k,

which gives

θ < θ ≤ θ

upon taking limit as k → ∞. Thus, we deduce that θ = 0. In other words,

lim
n→∞

∆n = lim
n→∞

max{d(g(xn), g(xn+1)), d(g(yn), g(yn+1))} = 0. (2.15)

However, this is possible only when

lim
n→∞

d(g(xn), g(xn+1)) = 0 = lim
n→∞

d(g(yn), g(yn+1)). (2.16)

We claim that the sequences {g(xn)} and {g(yn)} are Cauchy sequences. Assume
the contrary, that is, at least one of them is not Cauchy. Then there exist ε > 0
and two sequences of integers, say, {km} and {lm} such that lm > km > m and

d(g(xkm
), g(xlm)) ≥ ε and d(g(ykm

), g(ylm)) ≥ ε

for all m ≥ 1. This implies that

tm = max{d(g(xlm), g(xkm
)), d(g(ylm), g(ykm

))} ≥ ε, (2.17)

for all m ≥ 1. Take km as the smallest number exceeding lm satisfying (2.17). Then
we have

max{d(g(xkm−1), g(xlm)), d(g(ykm−1), g(ylm))} < ε. (2.18)

Using (2.18),(2.17), and the definition (2.12) we get

ε ≤ tm = max{d(g(xlm), g(xkm
)), d(g(ylm), g(ykm

))}
≤ max{d(g(xlm), g(xkm−1)) + d(g(xkm−1), g(xkm

)),
d(g(ylm), g(ykm−1)) + d(g(ykm−1), g(ykm

))}
≤ max{d(g(xlm), g(xkm−1)), d(g(ylm), g(ykm−1))},

+max{d(g(xkm−1), g(xkm
)), d(g(ykm−1), g(ykm

))}
< ε+∆km−1

(2.19)

by employing the triangle inequality. Letting m→ ∞ in (2.19), we obtain

ε ≤ lim
m→∞

tm ≤ lim
m→∞

[ε+∆km−1]

which gives

lim
m→∞

tm = ε (2.20)

because of (2.15). By the definitions (2.12) and (2.8) and using the triangle in-
equality, we have

tm = max{d(g(xlm), g(xkm
)), d(g(ylm), g(ykm

))}
≤ max{d(g(xlm), g(xlm+1)) + d(g(xlm+1), g(xkm+1)) + d(g(xkm+1), g(xkm

)),
d(g(ylm), g(ylm+1)) + d(g(ylm+1), g(ykm+1)) + d(g(ykm+1), g(ykm

))}
= ∆km

+∆lm +max{d(g(xlm+1), g(xkm+1)), d(g(ylm+1), g(ykm+1))}
= ∆km

+∆lm + {d(F (xlm , ylm), F (xkm
, ykm

)), d(F (ylm , xlm), F (ykm
, xkm

))}.
(2.21)
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Regarding Lemma 11, we notice that

{d(F (xlm , ylm), F (xkm
, ykm

)), d(F (ylm , xlm), F (ykm
, xkm

))}
< {d(g(xlm), g(xkm

)), d(g(ylm), g(ykm
))} = tm.

Hence, (2.21) turns into

tm < ∆km
+∆lm + tm.

Upon letting m→ ∞, the inequality above leads to

ε < ε

on account of (2.15). It is a contradiction. Thus, the sequences {g(xn)} and {g(yn)}
are Cauchy in (X,≤, d). Since (X,≤, d) is complete, there exist x, y ∈ X such that

lim
n→∞

d(x, g(xn)) = 0 ⇐⇒ lim
n→∞

g(xn) = lim
n→∞

F (xn, yn) = x, (2.22)

lim
n→∞

d(y, g(yn)) = 0 ⇐⇒ lim
n→∞

g(yn) = lim
n→∞

F (yn, xn) = y. (2.23)

Since F and g are compatible mappings, by (2.22) and (2.23), we derived that

lim
n→∞

d(g(F (xn, yn), F (g(xn), g(yn)) = 0, (2.24)

lim
n→∞

d(g(F (yn, xn), F (g(yn), g(xn)) = 0 (2.25)

Moreover, since the sequences {g(xn)} and {g(yn)} are monotone, we conclude
that

g(xn) < x and g(yn) > y, (2.26)

for each n ≥ 1. On the other hand, by the continuity of g, and the limits (2.22)
and (2.23), we have

lim
n→∞

d(g(x), g(g(xn))) = lim
n→∞

d(g(g(xn)), g(g(xn))) = d(g(x), g(x)) = 0

and

lim
n→∞

d(g(y), g(g(yn))) = lim
n→∞

d(g(g(yn)), g(g(yn))) = d(g(y), g(y)) = 0.

Hence, for all k ≥ 1, there exists a positive integer N such that

d(g(x), g(g(xn))) <
1

6k
and d(g(y), g(g(yn))) <

1

6k
(2.27)

for all n ≥ N . Using again the triangle inequality, together with (2.8), we find

d(F (g(xn), g(yn)), g(x)) ≤ d(F (g(xn), g(yn)), gF (xn, yn)) + d(gF (xn, yn), g(x))
(2.28)

Similarly, we derive

d(F (g(yn), g(xn)), g(y)) ≤ d(F (g(yn), g(xn)), gF (yn, xn)) + d(gF (yn, xn), g(y))
(2.29)

Letting n→ ∞ in the above inequalities (2.28), (2.29), (2.24) , and the continu-
ities of F and g, we have

lim
n→∞

g(F (x, y), gx) = 0 and lim
n→∞

g(F (y, x), gy) = 0.

Hence, we derive that gx = F (x, y) and gy = F (y, x), that is, (x, y) ∈ X2 is a
coincidence point of F and g.

�
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Corollary 14. Let (X, d,≤) be a partially ordered complete metric space and F :
X2 → X be a mapping such that F (X × X) ⊂ X. Suppose that F satisfies the
following conditions

(i) F is continuous,
(ii) F has the mixed strict monotone property,
(iii) F is a weak Meir-Keeler type contraction,
(iv) there exist x0, y0 ∈ X such that

x0 < F (x0, y0), y0 > F (y0, x0). (2.30)

Then F has a coupled fixed point, that is, there exist x, y ∈ X such that

F (x, y) = x, F (y, x) = y.

The following example illustrates that Theorem 13 is more general than Theorem
8

Example 15. Let X be the set [0,∞) and d(x, y) = |x−y|. Set g : X → X and F :

X×X → X be defined as g(x) = x2 and F (x, y) =

{

x2
−5y2

8
if x, y ∈ X, x ≥ y

0 if x < y
,

respectively.
Then the operator F satisfies the strict mixed g-monotone property. Although

Theorem 8 is not applicable, Theorem 13 yields a fixed point. Suppose, to the
contrary, that the condition (2.1) is satisfied. Let x, y, u, v ∈ X with x ≥ u, y ≤ v

such that

ε ≤
1

2
[d(g(x), g(u)) + d(g(y), g(v))] =

1

2
[|x2 − u2|+ |y2 − v2|] < ε+ δ(ε). (2.31)

By choosing x = u, we derive that

ε ≤
1

2
[d(g(x), g(u)) + d(g(y), g(v))] =

1

2
|y2 − v2| < ε+ δ(ε), y ≤ v. (2.32)

On the other hand,

d(F (x, y), F (u, v)) =

∣

∣

∣

∣

x2 − 5y2

8
−
u2 − 5v2

8

∣

∣

∣

∣

=

∣

∣

∣

∣

5v2 − 5y2

8

∣

∣

∣

∣

=
5

8
|v2 − y2| < ε

(2.33)
where x = u and y ≤ v. Combining (2.32) and (2.33), we get that

2ε ≤ |y2 − v2| ≤
8

5
ε < 2ε

which is a contradiction.
But, F satisfies Theorem 13. Indeed, we have

ε ≤ max{d(g(x), g(u)), d(g(y), g(v))} = max{|x2−u2|, |y2− v2|} < ε+ δ(ε) (2.34)

and also

d(F (x, y), F (u, v)) =

∣

∣

∣

∣

x2 − 5y2

8
−
u2 − 5v2

8

∣

∣

∣

∣

≤
1

8
|x2−u2|+

5

8
|v2−y2|, x ≥ u, y ≤ v

(2.35)

d(F (y, x), F (v, u)) =

∣

∣

∣

∣

y2 − 5x2

8
−
v2 − 5u2

8

∣

∣

∣

∣

≤
5

8
|x2−u2|+

1

8
|v2−y2|, x ≥ u, y ≤ v.

(2.36)
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From (2.35) and (2.36), we obtain that

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))}

= max{
∣

∣

∣

x2
−5y2

8
− u2

−5v2

8

∣

∣

∣
,
∣

∣

∣

y2
−5x2

8
− v2

−5u2

8

∣

∣

∣
}

≤ max{ 1

8
|x2 − u2|+ 5

8
|v2 − y2|, 5

8
|x2 − u2|+ 1

8
|v2 − y2|}.

(2.37)

Without loss of generality, assume that |v2 − y2| ≤ |x2 − u2|. Then

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} =
6

8
|x2 − u2| <

6

8
(ε+ δ(ε)).

Thus, by choosing δ(ε) < 4

3
ε, the condition (2.4) is satisfied. Notice that (0, 0)

is the coupled fixed point of F .

3. Uniqueness of Coupled Fixed Point

In this section we shall prove the uniqueness of coupled fixed point.

Theorem 16. In addition to the hypotheses of Theorem 13, assume that for all
(x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 such that (F (a, b), F (b, a)) is compa-
rable to both (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)) . Then, F and g have a
unique couple common fixed point, that is, there exists (x, y) ∈ X2 such that

x = g(x) = F (x, y) and y = g(y) = F (y, x).

Proof. The set of coupled coincidence points of F and g is not empty due to Theo-
rem 13. We suppose that (x, y), (x∗, y∗) ∈ X2 are coupled coincidence points of F
and g and distinguish the following two cases.
First case: (x, y) is comparable to (x∗, y∗) with respect to the ordering in X2,
where

F (x, y) = g(x), F (y, x) = g(y), F (x∗, y∗) = g(x∗), F (y∗, x∗) = g(y∗).

Without loss of the generality, we may assume that

g(x) = F (x, y) < F (x∗, y∗) = g(x∗), g(y) = F (y, x) ≥ F (y∗, x∗) = g(y∗).

By the definition of ρ2 and Lemma 11 we have

ρ2((g(x), g(y)), (g(x
∗), g(y∗))) = max{d(g(x), g(x∗)), d(g(y), g(y∗))}

= max{d(F (x, y), F (x∗, y∗)), d(F (y, x), F (y∗, x∗))},

< max{d(g(x), g(x∗)), d(g(y), g(y∗))}

which is a contradiction. Therefore, we have (g(x), g(x∗)) = (g(y), g(y∗)).Hence
g(x) = g(x∗) and g(y) = g(y∗).

Second case: (x, y) is not comparable to (x∗, y∗). By the assumption there
exists (a, b) ∈ X2 which is comparable to both (x, y) and (x∗, y∗). Without loss of
the generality we may assume that

g(x) = F (x, y) < g(a) and F (x∗, y∗) = g(x∗) < g(a),
g(y) = F (y, x) ≥ g(b) and F (y∗, x∗) = g(y∗) ≥ g(b),

(3.1)

Setting x = x0, y = y0, a = a0, b = b0, as in the proof of Theorem 13, we get

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) for all n = 0, 1, 2, · · · , (3.2)
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g(an+1) = F (an, bn) and g(bn+1) = F (bn, an) for all n = 0, 1, 2, · · · . (3.3)

Since (F (x, y), F (y, x)) = (g(x), g(y)) = (g(x1), g(y1)) is comparable with (F (a, b), F (a, a)) =
(g(a), g(b)) = (g(a1), g(b1)), we have g(x) < g(a1) and g(b1) < g(y). Inductively,
we observe that (g(x), g(y)) is comparable with (g(an), g(bn)) for all n ≥ 1. Thus,
by Lemma 11 we get that

max{d(g(x), g(an+1)), d(g(y), g(bn+1))}
= max{d(F (x, y), F (an, bn)), d(F (y, x), F (bn, an))}
< max{d(g(x), g(an)), d(g(y), g(bn))}.

(3.4)

Inductively, we derive that

max{d(g(x), g(an+1)), d(g(y), g(bn+1))} < max{d(g(x), g(a1)), d(g(y), g(b1))}.

The right hand side of the inequality above tends to zero as n → ∞. Hence,
limn→∞ max{d(g(x), g(an+1)), d(g(y), g(bn+1))} = 0. Analogously, we get that
limn→∞ max{d(g(x∗), g(an+1)), d(g(y

∗), g(bn+1))} = 0. By the triangle inequality,
we have

d(g(x), g(x∗)) ≤ d(g(x), g(an+1)) + d(g(x∗), g(an+1))− d(g(an+1), g(an+1))
≤ d(g(x), g(an+1)) + d(g(x∗), g(an+1)) → 0 as n→ ∞,

d(g(y), g(y∗)) ≤ d(g(y), g(bn+1)) + d(g(y∗), g(bn+1))− d(g(bn+1), g(bn+1))
≤ d(g(y), g(bn+1)) + d(g(y∗), g(bn+1)) → 0 as n→ ∞.

Combining all of the observations above, we get that lim
n→∞

d(g(x∗), g(x)) = 0 and

lim
n→∞

d(g(y∗), g(y)) = 0. So we have

g(x) = g(x∗) and g(y) = g(y∗). (3.5)

Let g(x) = u and g(y) = v. By combining the commutativity of F and g with
the fact that g(x) = F (x, y) and F (y, x) = g(y), we have

g(u) = g(g(x)) = g(F (x, y)) = F (g(x), g(y)) = (u, v), (3.6)

g(v) = g(g(y)) = g(F (y, x)) = F (g(y), g(x)) = (v, u). (3.7)

Thus, (u, v) is a coupled coincidence point of F and g. Setting u = x∗ and v = y∗

in (3.6), (3.7). Then, by (3.5) we have

u = g(x) = g(x∗) = g(u) and v = g(y) = g(y∗) = g(v).

From (3.6), and (3.7) we get that

u = g(u) = F (u, v) and v = g(v) = F (v, u).

Hence, the pair (u, v) is a coupled common fixed point of F and g.
We claim that (u, v) is the unique coupled common fixed point of F and g.

Suppose, on the contrary, that (z, w) is another coupled fixed point of F and g.
But then

u = g(u) = g(z) = z and v = g(v) = g(w) = w

follows from (3.5).
�

Corollary 17. In addition to the hypotheses of Theorem 14, assume that for all
(x, y), (x∗, y∗) ∈ X2, there exists (a, b) ∈ X2 that is comparable to (x, y) and
(x∗, y∗). Then, F has a unique coupled fixed point.
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4. A Short Survey For Coupled Fixed Point Theorems

In addition to our results proved in earlier sections, in this section, we include
the newer and improved versions of some of the recent theorems on the topic. We
only give the statements of the existence theorems on coupled fixed points and
omit the proofs. Because the proof of each of the earlier version applies, mutatis
mutandis, to the corresponding newer version. We also illustrate the apparent
effectiveness of improved versions by providing a number of examples. We would
like to point out that the conclusion of the uniqueness of coupled fixed points in
newer versions can be obtained under the condition of comparability used in a way
analogous to Theorem 16. By taking this remark into account, we do not phrase
the statements of the related uniqueness theorems. This section can be considered
as a continuation of work of Berinde [6, 7].

Definition 18. [20] A function ϕ : [0,∞) → [0,∞) is called an alternating distance
function if the following properties are satisfied:

(i) ϕ is monotone increasing and continuous,
(ii) ϕ(t) = 0 if and only if t = 0.

In [22] Luong and Thuan consider the following classes of functions. Let Φ
denotes the set of all alternating distance functions ϕ : [0,∞) → [0,∞) satisfying

(iii) ϕ(t+ s) ≤ ϕ(t) + ϕ(s) for all s, t ∈ [0,∞).

In addition, let Ψ denotes the set of all functions ψ : [0,∞) → [0,∞) which satisfy
lim
t→r

ψ(t) > 0 for all r > 0 and lim
t→0+

ψ(t) = 0.

In [22] Luong and Thuan proved the following coupled fixed point theorem.

Theorem 19. Let (X, d,≤) be a partially ordered complete metric space. Let F :
X ×X → X be a mapping with the mixed monotone property on X. Suppose that
there exist a ϕ ∈ Φ and a ψ ∈ Ψ such that

ϕ(d(F (x, y), F (u, v))) ≤
1

2
ϕ([d(x, u) + d(y, v)])− ψ(

1

2
[d(x, u) + d(y, v)]), (4.1)

for all u ≤ x, y ≤ v. Suppose either

(a) F is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x, ∀n;
(i) if a non-increasing sequence {yn} → y, then y ≤ yn, ∀n.

If there exist x0, y0 ∈ X such that x0 ≤ F (x0, y0) and F (y0, x0) ≤ y0, then, there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

We improve Theorem 19 as follows.

Theorem 20. (cf. [12]) Let (X, d,≤) be a partially ordered complete metric space.
Let F : X×X → X be a mapping with the mixed monotone property on X. Suppose
that there exists a ϕ ∈ Φ and ψ ∈ Ψ such that either

ϕ(d(F (x, y), F (u, v))+d(F (y, x), F (v, u))) ≤ ϕ([d(x, u) + d(y, v)])−ψ([d(x, u) + d(y, v)]),
(4.2)

or

ϕ(d(F (x, y), F (u, v))) ≤ ϕ(max d(x, u), d(y, v))− ψ(max d(x, u), d(y, v)), (4.3)

is satisfied for all u ≤ x, y ≤ v. Suppose either
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(a) F is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ≤ x, ∀n;
(i) if a non-increasing sequence {yn} → y, then y ≤ yn, ∀n.

If there exist x0, y0 ∈ X such that x0 ≤ F (x0, y0) and F (y0, x0) ≤ y0, then, there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Theorem 20 is more general than Theorem 19. The following example illustrates
this claim.

Example 21. Let X be a real line and d(x, y) = |x−y|. Suppose that F : X×X →
X is defined as F (x, y) = x−5y

8
for x, y ∈ X.

It is clear that the operator F satisfies the mixed monotone property. Theorem
20 yields a fixed point for ϕ(t) = 15

16
t and ψ(t) = 1

16
t. However Theorem 19 is not

applicable. Notice that (0, 0) is the coupled fixed point of F .

The main result of [21] is the following.

Theorem 22. Let (X,≤) be a partially ordered set and (X, d) be a complete metric
space. Assume that there exists a function ϕ : [0,∞) → [0,∞) with ϕ(t) < t and
lim

r→r+
ϕ(r) < t for each t > 0. Suppose that F : X ×X → X and g : X → X be two

mappings where X 6= ∅. Also suppose that F has the mixed g-monotone property
and

d(F (x, y), F (u, v)) ≤ ϕ

(

[d(g(x), g(u)) + d(g(y), g(v))]

2

)

(4.4)

for all x, y, u, v ∈ X for which g(x) ≤ g(u) and g(v) ≤ g(y). Suppose F (X ×X) ⊂
g(X), g is sequentially continuous and commutes with F and also suppose either F
is continuous or X has the following property:

if a non-decreasing sequence {xn} → x, then xn ≤ x, for all n, (4.5)

if a non-increasing sequence {yn} → y, then y ≤ yn, for all n. (4.6)

If there exist x0, y0 ∈ X such that g(x0) ≤ F (x0, y0) and g(y0) ≤ F (y0, x0), then
there exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x), that is, F and g
have a couple coincidence.

We improve Theorem 22 in the following way:

Theorem 23. (cf.[7]) Let (X,≤) be a partially ordered set and (X, d) be a complete
metric space. Assume that there exists a function ϕ : [0,∞) → [0,∞) with ϕ(t) < t

and lim
r→r+

ϕ(r) < t for each t > 0. Also assume that F : X×X → X and g : X → X

be two maps where X 6= ∅. Suppose that F has the mixed g-monotone property and
either

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ ϕ ([d(g(x), g(u)) + d(g(y), g(v))]) (4.7)

or

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} ≤ ϕ ({d(g(x), g(u)), d(g(y), g(v))})
(4.8)

is satisfied for all x, y, u, v ∈ X for which g(x) ≤ g(u) and g(v) ≤ g(y). Suppose
F (X×X) ⊂ g(X), g is sequentially continuous and commutes with F . Additionally
suppose either F is continuous or X has the following property:

if a non-decreasing sequence {xn} → x, then xn ≤ x, for all n, (4.9)



REMARKS ON COUPLED FIXED POINT THEOREMS IN PARTIALLY ORDERED METRIC SPACES127

if a non-increasing sequence {yn} → y, then y ≤ yn, for all n. (4.10)

If there exist x0, y0 ∈ X such that g(x0) ≤ F (x0, y0) and g(y0) ≤ F (y0, x0), then
there exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x), that is, F and g
have a couple coincidence.

Theorem 23 is more general than Theorem 22. The following example illustrates
this claim.

Example 24. Let X be a real line and d(x, y) = |x − y|. Set g : X → X and
F : X × X → X be defined as g(x) = 7x

8
and F (x, y) = x−5y

8
for x, y ∈ X,

respectively.
It is easy to see that the operator F satisfies the mixed g-monotone property.

Theorem 23 yields a fixed point but Theorem 22 is not applicable. Notice that (0, 0)
is the coupled fixed point of F .

Remark 25. Theorem 23 and Theorem 3 in [7] are equivalent to each other. Indeed,
this equivalence follows from the fact that

a+ b

2
≤ max{a, b} ≤ a+ b

where a, b ∈ [0,∞).
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