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ON A q-ANALOGUE OF THE ONE-DIMENSIONAL HEAT
EQUATION

(COMMUNICATED BY FRANCISCO MARCELLAN )

AHMED FITOUHI & NÉJI BETTAIBI & KAMEL MEZLINI

Abstract. In this paper, a q-analogue of the one-dimensional heat equation
associated with some q-differential operators is considered and a q-analogue of
the theory of the heat equation introduced by P. C. Rosenbloom and D. V.
Widder is developed.

1. Introduction

The solution of the heat equation arises as a modeling task in heat transfer
and a variety of engineering, scientific, and financial applications. The best known
analytic function theory associated with the heat equation is developed by P. C.
Rosenbloom and D. V. Widder in [10, 11] and it is based on the heat polynomials
and associated heat functions. The radial heat equation has been investigated by
Bragg [1] and more extensively by Haimo [4]. These works have been generalized
by Fitouhi [2] for singular operators. For many problems, the exact solution is not
available or too complicated to use. Then, a numerical method is necessary for
solving the problem. It is well known that the quantum calculus provides a natural
discretization of the heat equation. For this discretization, we shall replace the

partial derivatives
∂

∂t
and

∂

∂x
by Dq2 derivative [3] and the Rubin’s ∂q-derivative

[8, 9] in time and in space, respectively, and we attempt to develop the q-analogue
of the theory introduced by P. C. Rosenbloom and D. V. Widder. In this way, at
the limit as q tends to 1, one recovers some results related to the heat equation in
the continuous model.
We proclaim that, in this paper, we are not in a situation to study or discuss a
numerical method, but we show by some examples and graphics that our results
coincide with the classical ones when q is near 1.
This paper is organized as follows: in Section 2, we recall some notations and useful
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results. In Section 3, we define the generalized translation associated with the Ru-
bin’s ∂q-operator and we establish some of its properties. In Section 4, we review a
few of the most basic solutions of the one-dimensional classical heat equation. Next,
we introduce the q-heat equation, and we present the q-source solution k(x, t; q) and
study some of its properties. Section 5 is devoted to construct and study two basic
sets of solutions of the q-heat equation: the set {vn(x, t; q)}∞n=0 of q-heat polyno-
mials and the q-associated functions set {wn(x, t; q)}∞n=0. In particular, we show
that the q-heat polynomials and the q-associated functions are closely related to
the discrete q-Hermite I polynomials and the discrete q-Hermite II polynomials,
respectively. Furthermore, we introduce two systems of biorthogonal polynomials
related to the q-source solution k(x, t; q). In Section 6, we discuss an asymptotic es-
timations for the functions vn(x, t; q) and wn(x, t; q) for large n. Next, we establish
some results related to the series expansion of solutions of q-heat equation. Finally,
we discuss from an analytic and a graphic point of view how these q-difference
operators can be used to solve approximately the heat equation and illustrate the
performance of this approach with some examples.

2. Preliminaries

For the convenience of the reader, we provide in this section a summary of the
mathematical notations and definitions used in this paper. We refer the reader to
the general references [3] and [5], for the definitions, notations and properties of
the q-shifted factorials and the q-hypergeometric functions.
Throughout this paper, we assume q ∈]0, 1[ and we write

Rq = {±qn : n ∈ Z}, Rq,+ = {qn : n ∈ Z} and R̃q = Rq ∪ {0}.

2.1. Basic symbols. For a complex number a, the q-shifted factorials are defined
by:

(a; q)0 = 1; (a; q)n =
n−1∏
k=0

(1− aqk), n = 1, 2, ...; (a; q)∞ =
∞∏

k=0

(1− aqk).

We also denote

[x]q =
1− qx

1− q
, x ∈ C and n!q =

(q; q)n

(1− q)n
, n ∈ N.

It is easy to verify that

n!q−1 = q−
n(n−1)

2 n!q. (1)

Using the Gauss q-binomial coefficients (see [3] )(
n
k

)
q

=
n!q

k!q(n− k)!q
,

the q-binomial theorem is given by

(−z; q)n =
n∑

k=0

(
n
k

)
q

qk(k−1)/2zk. (2)
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2.2. Operators and elementary q-special functions.
The Jackson’s q-derivative is defined by (see [3, 5])

Dqf(z) =


f(z)− f(qz)

(1− q)z
if z 6= 0

lim
x→0

Dqf(x) if z = 0.

The Rubin’s q-differential operator is defined in [8, 9] by

∂q(f)(z) =


f(q−1z) + f(−q−1z)− f(qz) + f(−qz)− 2f(−z)

2(1− q)z
if z 6= 0

lim
x→0

∂q(f)(x) if z = 0.

(3)
Note that if f is differentiable at z, then ∂q(f)(z) and Dq(f)(z) tend to f ′(z) as q
tends to 1.

We state the following easily proved result:

Proposition 2.1. For all n ∈ N, we have

(1) ∂2n
q f = q−n(n+1)

(
D2n

q fe

)
oΛn

q + q−n2 (
D2n

q fo

)
oΛn

q ,

(2) ∂2n+1
q f = q−(n+1)2

(
D2n+1

q fe

)
oΛ(n+1)

q + q−n(n+1)
(
D2n+1

q fo

)
oΛn

q ,
where fe and fo are, respectively, the even and the odd parts of f , and Λn

q

is the function defined by Λn
q (x) = q−nx.

The q-Jackson integral (see [3]) is defined by∫ b

a

f(x)dqx =
∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx, (4)

where ∫ a

0

f(x)dqx = a(1− q)
∞∑

n=−∞
f(aqn)qn, (5)

and from 0 to +∞ and from −∞ to +∞ are defined by∫ ∞

0

f(x)dqx = (1− q)
∞∑

n=−∞
f(qn)qn, (6)

∫ ∞

−∞
f(x)dqx = (1− q)

∞∑
n=−∞

f(qn)qn + (1− q)
∞∑

n=−∞
f(−qn)qn, (7)

provided the sums converge absolutely.
Note that when f is continuous on [0, a], it can be shown that

lim
q→1

∫ a

0

f(x)dqx =
∫ a

0

f(x)dx. (8)

The following results hold by direct computation.

Lemma 2.1.

(1) If
∫ ∞

−∞
f(x)dqx exists, then

(a) for all integer n,
∫ ∞

−∞
f(qnt)dqt = q−n

∫ ∞

−∞
f(t)dqt.
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(b) if f is odd, then
∫ ∞

−∞
f(t)dqt = 0.

(c) if f is even, then
∫ ∞

−∞
f(t)dqt = 2

∫ ∞

0

f(t)dqt.

(2) If
∫ ∞

−∞
(∂qf)(t)g(t)dqt exists, then∫ ∞

−∞
(∂qf)(t)g(t)dqt = −

∫ ∞

−∞
f(t)(∂qg)(t)dqt. (9)

Notation. Using the Jackson’s q-integral, we we denote by Lp
q = Lp

q(Rq), p > 0,
the space of all complex functions defined on Rq induced by the norm

‖f‖p,q =
(∫ ∞

−∞
|f(x)|pdqx

) 1
p

.

Two q-analogues of the exponential function are given by ( see [3])

Eq(z) :=
∞∑

k=0

q
k(k−1)

2

(q; q)k
zk = (−z; q)∞, (10)

eq(z) :=
∞∑

k=0

1
(q; q)k

zk =
1

(z; q)∞
|z| < 1. (11)

Eq is entire on C. But, for the convergence of the second series, we need |z| < 1;
however, because of its product representation, eq is continuable to a meromorphic
function on C and has simple poles at z = q−n, n ∈ N.
We denote by

expq(z) := eq((1− q)z) =
∞∑

n=0

zn

n!q
(12)

and

Expq(z) := Eq((1− q)z) =
∞∑

n=0

q
n(n−1)

2 zn

n!q
. (13)

It follows from (1) that
Expq2(z) = expq−2(z). (14)

We have (see [3])
lim

q→1−
expq(z) = lim

q→1−
Expq(z) = ez, (15)

where ez is the classical exponential function.
The q-trigonometric functions (see[7]) are defined on C by

cos(x; q2) :=
∞∑

n=0

(−1)nb2n(x; q2) (16)

and

sin(x; q2) :=
∞∑

n=0

(−1)nb2n+1(x; q2), (17)

where

bn(x; q2) =
q[

n
2 ]([n

2 ]+1)

n!q
xn (18)



ON A q-ANALOGUE OF THE ONE-DIMENSIONAL HEAT EQUATION 149

and [x] is the integer part of x ∈ R.
These two functions induce a ∂q-adapted q-analogue exponential function (see
[8, 9]):

e(z; q2) := cos(−iz; q2) + i sin(−iz; q2) =
∞∑

n=0

bn(z; q2). (19)

e(z; q2) is absolutely convergent for all z in the plane, and we have lim
q→1−

e(z; q2) = ez

point-wise and uniformly on compacta. Note that we have

Lemma 2.2. (see [8])

For all λ ∈ C, ∂qe(λz; q2) = λe(λz; q2). (20)

For all x ∈ Rq, |e(ix; q2)| ≤ 2
(q; q)∞

. (21)

2.3. The Fourier-Rubin transform.

In [8] and [9], R. L. Rubin defined the Fourier-Rubin transform as

Fq(f)(x) := K

∫ ∞

−∞
f(t)e(−itx; q2)dqt, x ∈ R̃q, (22)

where

K =
(q; q2)∞

2(q2; q2)∞(1− q)
1
2
. (23)

Letting q ↑ 1 subject to the condition

Log(1− q)
Log(q)

∈ 2Z, (24)

gives, at least formally, the classical Fourier transform. In the remainder of this
paper, we assume that the condition (24) holds.
It was shown in [8] and [9] that the Fourier-Rubin transform Fq satisfies the fol-
lowing properties:

Theorem 2.1.

(1) If f, g ∈ L1
q, then

∫ ∞

−∞
Fq(f)(x)g(x)dqx =

∫ ∞

−∞
f(x)Fq(g)(x)dqx.

(2) If f(u), uf(u) ∈ L1
q, then

∂qFq(f)(x) = Fq(−iuf(u))(x).

(3) If f, ∂qf ∈ L1
q, then

Fq(∂qf)(x) = ixFq(f)(x).

(4) Fq is an isomorphism of L2
q, satisfying for f ∈ L2

q

‖Fq(f)‖L2
q

= ‖f‖L2
q
,

and for t ∈ Rq,

f(t) = K

∫ ∞

−∞
Fq(f)(x)e(itx; q2)dqx. (25)
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3. The q-generalized translation operator associated with the
operator ∂q

Definition 3.1. The q-translation operator Ty,q, y ∈ C, related to the q-differential
operator ∂q, is defined by

Ty,q(f)(x) := e(y∂q; q2)f(x) =
∞∑

n=0

bn(y; q2)∂n
q f(x), (26)

provided the series converges point wise.

Remarks.
(1) Note that for suitable functions f(x), we have

lim
q→1−

Tq,y(f)(x) = f(x + y).

(2) Since for all n ∈ N, bn(.; q2) is a polynomial of degree n, then for all
k ≥ n + 1, we have ∂k

q bn(x; q2) = 0. Then

pn,q(x, y) := n!qTy,qbn(x; q2) (27)

is a polynomial of degree n, that it will be called q-binomial polynomial.

Proposition 3.1. Let x, y, λ ∈ C and n ∈ N. Then,

∂k
q bn(x; q2) = bn−k(x; q2), k = 0, 1, ...n. (28)

Ty,qbn(x; q2) =
n∑

k=0

bk(y; q2)bn−k(x; q2) =
1

n!q
pn,q(x, y). (29)

Ty,qe(λx; q2) = e(λx; q2)e(λy; q2). (30)
The generating function of {pn,q(., .)}n∈N is given by

e(λx; q2)e(λy; q2) =
∞∑

n=0

pn,q(x, y)
n!q

λn. (31)

Proof. (28) follows easily from the fact that ∂qbn(x; q2) = bn−1(x; q2).
(29) is a consequence of the relations (28) and (26).
Using (20), we have

Ty,qe(λx; q2) =
∞∑

n=0

bn(y; q2)∂n
q e(λx; q2)

=
∞∑

n=0

bn(y; q2)λne(λx; q2)

= e(λx; q2)
∞∑

n=0

bn(λy; q2) = e(λx; q2)e(λy; q2).

This proves (30). (31) follows from (30) and (27). �

Lemma 3.1. For n = 0, 1, 2, ..., we have

p2n,q(|x|, |y|)| ≤
(2n)!q
n!q2

(1 + |xy|)Eq2(|x|2)Eq2(|y|2) (32)
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and

p2n+1,q(|x|, |y|) ≤
(2n + 1)!q

n!q2
(|x|+ |y|)Eq2(|x|2)Eq2(|y|2), (33)

where Eq(.) is the q-exponential function given by (10).

Proof. From (29), we have

p2n,q(|x|, |y|) = (2n)!q
2n∑

k=0

bk(|x|; q2)b2n−k(|y|; q2).

But,
2n∑

k=0

bk(|x|; q2)b2n−k(|y|; q2) =
n∑

k=0

b2k(|x|; q2)b2(n−k)(|y|; q2)

+
n−1∑
k=0

b2k+1(|x|; q2)b2(n−k)−1(|y|; q2)

and using the fact that (2k)!q ≥ (k!q2)2, the following inequalities hold

b2k(|x|; q2) ≤ qk(k−1)|x|2k

k!q2
, b2k(|y|; q2) ≤

Eq2(|y|2)
k!q2

, k = 0, 1, 2, ...

It follows then, by using the q-binomial theorem (2),
n∑

k=0

b2k(|x|; q2)b2(n−k)(|y|; q2) ≤
Eq2(|y|2)

n!q2

n∑
k=0

n!q2qk(k−1)

(n− k)!q2k!q2
|x|2k

≤
Eq2(|y|2)(−|x|2; q2)n

n!q2

≤
Eq2(|x|2)Eq2(|y|2)

n!q2
.

(34)

Since (2k + 1)!q ≥ k!q2(k + 1)!q2 , the following inequalities hold

b2k+1(|x|; q2) ≤ |x|qk(k−1)|x|2k

k!q2
, k = 0, 1, 2, ...

b2k−1(|y|; q2) ≤
|y|Eq2(|y|2)

k!q2
, k = 1, 2, 3, ...

Consequently,
n−1∑
k=0

b2k+1(|x|; q2)b2(n−k)−1(|y|; q2) ≤
|xy|Eq2(|y|2)

n!q2

n∑
k=0

n!q2qk(k−1)

(n− k)!q2k!q2
|x|2k

≤ |xy|
Eq2(|x|2)Eq2(|y|2)

n!q2
.

This inequality together with (34) give (32).
Let us now prove the inequality (33). We have

p2n+1,q(|x|, |y|) = (2n + 1)!q
2n+1∑
k=0

bk(|x|; q2)b2n+1−k(|y|; q2),
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and

2n+1∑
k=0

bk(|x|; q2)b2n+1−k(|y|; q2) =
n∑

k=0

b2k(|x|; q2)b2(n−k)+1(|y|; q2)

+
n∑

k=0

b2k+1(|x|; q2)b2(n−k)(|y|; q2).

In the same way as in the proof of inequality (32), we obtain

2n+1∑
k=0

bk(|x|; q2)b2n+1−k(|y|; q2) ≤ (|x|+ |y|)
Eq2(|x|2)Eq2(|y|2)

n!q2
.

�

Definition 3.2. For σ > 0, we denote by Eσ,q the set of all entire functions f
satisfying:

∃ M > 0 : ∀n ∈ N,


|∂2n

q f(0)| ≤
Mn!q2

σn
,

|∂2n+1
q f(0)| ≤

Mn!q2

σn
.

(35)

Remark. In the definition of the class Eσ,q, the constant M is independent of n,
depending only on the function f .

Proposition 3.2. Let σ > 1 and f be in Eσ,q. Then

Ty,qf(x) =
∞∑

n=0

∂n
q f(0)
n!q

pn,q(x, y), (36)

where pn,q(x, y) are defined by (27).
The infinite series (36) converges locally uniformly in x and y.

Proof. First, if f is in Eσ,q, then

f(x) =
∞∑

n=0

anxn =
∞∑

n=0

an

bn(1; q2)
bn(x; q2).

So, by (28), we have for all nonnegative integer k

∂k
q f(x) =

∞∑
n=k

an

bn(1; q2)
bn−k(x; q2), (37)

from which we deduce that

∀n ≥ 0, an = ∂n
q f(0)bn(1; q2). (38)
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By (26), (37) and (38), we have

Ty,qf(x) =
∞∑

k=0

bk(y; q2)
∞∑

n=k

an

bn(1; q2)
bn−k(x; q2)

=
∞∑

k=0

bk(y; q2)
∞∑

n=k

∂n
q f(0)bn−k(x; q2)

=
∞∑

n=0

∂n
q f(0)

n∑
k=0

bk(y; q2)bn−k(x; q2).

(39)

Then, the desired conclusion follows from the relation (29).
Let us now, prove the locally uniformly convergence in x and y of the series (36).
From the definition of the function bn(.; q2) and the relation (29), we obtain for all
x, y ∈ C,

|pn,q(x, y)| ≤ pn,q(|x|, |y|).
Then, by using Lemma 3.1, we get, since f ∈ Eσ,q, that there exists M > 0, such
that for all x, y ∈ C and n ≥ 0,∣∣∣∣∣∂2n

q f(0)|
(2n)!q

p2n,q(x, y)

∣∣∣∣∣ ≤ M

σn
(1 + |xy|)Eq2(|x|2)Eq2(|y|2)

and ∣∣∣∣∣∂2n+1
q f(0)|

(2n + 1)!q
p2n+1,q(x, y)

∣∣∣∣∣ ≤ M

σn
(|x|+ |y|)Eq2(|x|2)Eq2(|y|2).

Finally, these relations, the continuity of the function Eq2 and the hypothesis σ > 1
prove the locally uniformly convergence in x and y of the series (36). �

4. q-heat Equation and q-source solution

4.1. Heat Equation. We restrict our attention to the simplest one-dimensional
heat equation on R

∂u

∂t
=

∂2u

∂2x
, (40)

which has been the object of extensive studies. In particular, we refer the reader
to the book of Widder [10]. One of the most important families of solutions of the
heat equation (40) is the so-called heat polynomials defined by

vn(x, t) = n!
[ n
2 ]∑

k=0

tk

k!(n− 2k)!
xn−2k, n = 0, 1, 2, ... (41)

The heat polynomials are closely related to the Hermite polynomials Hn(x) by (see
[11])

vn(x, t) = (−t)n/2Hn

(
x√
−4πt

)
.

The source solution or fundamental solution of (40) is given by

k(x, t) =
e−

x2
4t

√
4πt

.
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The associated functions wn(x, t) are defined by

wn(x, t) =
vn(x,−t)k(x, t)

tn
, n = 0, 1, 2....

They are solutions of the heat equation (40) and they are related to the Hermite
polynomials Hn(x) according to

wn(x, t) = t−n/2k(x, t)Hn(
x√
4πt

).

We have the following biorthogonality relation∫ +∞

−∞
vn(x,−t)wm(x, t)dx = 2nn!δm,n,

where δm,n is the Kronecker symbol.
In [10, 11] a complete study of necessary and sufficient conditions for the validity
of the expansion of solutions of the heat equation (40) in terms of heat polynomials
and associated functions has been developed.

4.2. The q-Heat Equation. We consider the following q-heat equation:

Dq2,tu = ∂2
q,xu. (42)

Remark. Taking into account that lim
q→1

Dq2,tu(t, x) =
∂u

∂t
(t, x) and lim

q→1
∂2

q,xu(t, x) =

∂2u

∂2x
u(t, x), it is clear that (42) is q-analogue of the standard heat equation (40).

That is, equation (40) can be recovered when q tends to 1.
Consider now, the following function

k(x, t; q) = C(t; q)expq2

(
− qx2

t(1 + q)2

)
, t > 0, (43)

where expq2(.) is defined by (12) and

C(t; q) =

(
− q(1−q)

t(1+q) ,−
qt(1+q)

1−q , q; q2
)
∞

2(1− q)
(
− q2(1−q)

t(1+q) ,− t(1+q)
1−q , q2; q2

)
∞

. (44)

Since

∂q,xk(x, t; q) = − C(t; q)x
qt(1 + q)

expq2

(
− x2

tq(1 + q)2

)
(45)

and

∂2
q,xk(x, t; q) = Dq2,tk(x, t; q) = − C(t; q)

qt(1 + q)

(
1− x2

t(1 + q)

)
expq2

(
− x2

tq(1 + q)2

)
,

then k(x, t; q) is a solution of the q-heat equation (42), that it will be called the
q-source solution.
For discussing its properties, we need the following preliminary results.

Proposition 4.1.
(1) The function eq2(−x2) has the rapid decreasing property:

lim
x→∞

pn(x)eq2(−x2) = 0, n = 0, 1, 2..., (46)

for all polynomial pn(x) is a of degree n.
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(2)

lim
x→∞

eq2(−qx2)
eq2(−x2)

= +∞. (47)

(3) For β > 0, we have

lim
x→∞

eq2(−qx2)eq2(−βx2)
eq2(−x2)

= 0. (48)

Proof. (1) Observe that for n = 0, 1, 2, ..., we have

eq2(−x2) =
∞∏

k=0

(1 + q2kx2)−1 ≤ (1 + q2nx2)−n = O(x−2n) as x → ±∞.

(2) For n = 0, 1, 2, ..., we have

eq2(−qx2)
eq2(−x2)

≥
n∏

k=0

1 + q2kx2

1 + q2k+1x2
,

it follows that for all n ∈ N,

lim
x→∞

eq2(−qx2)
eq2(−x2)

≥ q−n,

which yields to the result.
(3) Since the function eq2(−x2) is decreasing on [0,∞[, we obtain when β ≥ 1,

eq2(−βx2) ≤ eq2(−x2), ∀x ∈ R

and then

lim
x→∞

eq2(−qx2)eq2(−βx2)
eq2(−x2)

≤ lim
x→∞

eq2(−qx2) = 0.

If β < 1, then there exists n ∈ N, such that β > q2n and so

eq2(−βx2) ≤ eq2(−q2nx2) = (−x2; q2)neq2(−x2).

Then, by using (46), we get

lim
x→∞

eq2(−qx2)eq2(−βx2)
eq2(−x2)

≤ lim
x→∞

(−x2; q2)neq2(−qx2) = 0.

�

Proposition 4.2. For λ > 0 and n = 0, 1, 2, ..., we have∫ ∞

0

eq2(−λy2)y2n+1dqy =
(1− q)q−n(n+1)(q2; q2)n

λn+1
(49)

and ∫ ∞

0

eq2(−λy2)y2ndqy = cq(λ)
q−n2

(q; q2)n

λn
, (50)

where

cq(λ) =
(1− q)(−qλ,−q/λ, q2; q2)∞

(−λ,−q2/λ, q; q2)∞
. (51)
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Proof. (1) From the definition of the Jackson’s q-integral (6) and the relation (11),
we have ∫ ∞

0

eq2(−λy2)y2n+1dqy = (1− q)
∞∑

k=−∞

q(2n+2)k

(−λq2k; q2)∞
.

Then, using the Ramanujan identity
∞∑

k=−∞

zk

(bqk; q)∞
=

(bz, q/(bz), q; q)∞
(b, z, q/b; q)∞

, b 6= 0, (52)

we obtain∫ ∞

0

eq2(−λy2)y2n+1dqy =
(1− q)

(
−λq2n+2,−q−2n/λ, q2; q2

)
∞

(−λ, q2n+2,−q2/λ; q2)∞
.

We conclude (49) by using the following two identities(
−λq2n+2; q2

)
∞ =

(
−q2λ; q2

)
∞

(−q2λ; q2)n

and (
−q−2n/λ; q2

)
∞ = q−n(n+1)λ−n

(
−q2λ; q2

)
n

(
−λ−1; q2

)
∞ .

(2) A new use of the Ramanujan identity gives∫ ∞

0

eq2(−λy2)y2ndqy = (1− q)

(
−λq2n+1,−q−2n+1/λ, q2; q2

)
∞

(−λ, q2n+1,−q2/λ; q2)∞
.

Then, (50) follows by using the two following facts that(
−λq2n+1; q2

)
∞ =

(
−qλ; q2

)
∞

(−qλ; q2)n

and (
−q−2n+1/λ; q2

)
∞ = q−n(n+1) (q/λ)n (−qλ; q2

)
n

(
−q/λ; q2

)
∞ .

�

Proposition 4.3. For t > 0 and n = 0, 1, 2..., we have∫ ∞

−∞
k(x, t; q)b2n(x; q2)dqx =

tn

n!q2
(53)

and ∫ ∞

−∞
k(y, t; q)b2n+1(|y|; q2)dqy =

2C(t; q)tn+1(1 + q)2n+1n!q2

qn+1(2n + 1)!q
, (54)

where C(t; q) is defined by (44).

Proof. We obtain the result by taking λ =
q(1− q)
t(1 + q)

in (49) and (50) and using the

relation
(q; q2)n

(q; q)2n
=

1
(q2; q2)n

.

�
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Proposition 4.4.
Fq [k(., t; q)] (x) = Kexpq2

(
−tx2

)
.

Proof. Since k(., t; q) is even, then by using (53), we obtain

Fq(k(., t; q))(x) = K

∫ ∞

−∞
k(y, t; q) cos(yx; q2)dqy

= K

∞∑
n=0

(−1)nx2n

∫ ∞

−∞
k(y, t; q)b2n(y; q2)dqy,

= K

∞∑
n=0

(−1)nx2n tn

n!q2
= Kexpq2

(
−tx2

)
.

�

The following result summarizes some other properties of the q-source solution.

Theorem 4.1. For all t > 0 and x ∈ R, we have
1) k(x, t; q) > 0.

2) lim
t→0+

k(x, t; q) =

 +∞ if x = 0,

0 if x 6= 0.
3) ∫ ∞

−∞
k(x, t; q)dqx = 1. (55)

Proof. 1) follows from the definition of the q-source solution.

2) Note, that k(0, t; q) = C(t; q) and put λ =

√
q(1− q)
t(1 + q)

.

Using (47), we obtain

lim
t→0+

C(t; q) = lim
λ→+∞

(q; q2)∞eq2(−qλ2)
2(1− q)(q2; q2)∞eq2(−λ2)

= +∞.

If x 6= 0, then by using (48), we get

lim
t→0+

k(x, t; q) = lim
λ→+∞

(q; q2)∞eq2(−qλ2)eq2(−λ2x2)
2(1− q)(q2; q2)∞eq2(−λ2)

= 0.

3) follows from (53) by taking n = 0. �

5. q-Heat Polynomials and q-Associated functions

5.1. q-Heat Polynomials.
For z ∈ C, t ∈ R and x ∈ R, we have

expq2

(
tz2
)
cos(−ixz; q2) =

( ∞∑
p=0

tpz2p

p!q2

)( ∞∑
k=0

qk(k+1)x2kz2k

(2k)!q

)

=
∞∑

n=0

z2n
n∑

k=0

tn−kqk(k+1)x2k

(n− k)!q2(2k)!q

(56)
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Figure 1: Comparison of the classical heat kernel k(x, t) (solid line) and the q-heat
kernel k(x, t; q) (dashed line) at q = 0.9 for t = 0.8, t = 10−1 and t = 10−4.

and

iexpq2

(
tz2
)
sin(−ixz; q2) =

( ∞∑
p=0

tpz2p

p!q2

)( ∞∑
k=0

qk(k+1)x2k+1z2k+1

(2k + 1)!q

)

=
∞∑

n=0

z2n+1
n∑

k=0

tn−kqk(k+1)x2k+1

(n− k)!q2(2k + 1)!q
.

(57)

Then, using the relation

e(xz; q2) = cos(−ixz; q2) + i sin(−ixz; q2),

we obtain

expq2

(
tz2
)
e(xz; q2) =

∞∑
n=0

vn(x, t; q)
zn

n!q
, (58)

with, for all nonnegative integer n,

vn(x, t; q) = n!q

[ n
2 ]∑

k=0

tk

k!q2
bn−2k(x; q2). (59)

Remarks

(1) It is clear that for all nonnegative integer n, vn(., t; q) is a polynomial of
degree n and when q tends to 1, vn(., t; q) reduces to the standard heat
polynomial (41). So, the polynomials vn(., t; q) will be called q-heat poly-
nomials.

(2) It is easy to derive from (28)

∂q,xvn(x, t; q) = [n]qvn−1(x, t; q) (60)

and
Dq2,tvn(x, t; q) = [n]q[n− 1]qvn−2(x, t; q). (61)

Then all the q-heat polynomials vn(x, t; q) are solutions of the q-heat equa-
tion (42).
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(3) Multiplying the both sides of (58) by Expq2(−tz2) and next comparing the
coefficient of zn, we obtain

bn(x; q2) =
[ n
2 ]∑

k=0

(−t)kqk(k−1)vn−2k(x, t; q)
k!q2(n− 2k)!q

, n = 0, 1, 2.... (62)

The q-heat polynomials have the following q-integral representations.

Proposition 5.1. For t > 0, x ∈ R and n = 0, 1, 2..., we have

vn(x, t; q) =
∫ ∞

−∞
k(y, t; q)pn,q(x, y)dqy. (63)

Proof. Let t > 0, x ∈ R and n be a nonnegative integer. Then, using the parity of
the function k(., t; q) and the relation (53), we get∫ ∞

−∞
k(y, t; q)pn,q(x, y)dqy = n!q

n∑
k=0

bn−k(x; q2)
∫ ∞

−∞
k(y, t, q)bk(y; q2)dqy

= n!q

[n
2 ]∑

k=0

bn−2k(x; q2)
∫ ∞

−∞
k(y, t; q)b2k(y; q2)dqy

= n!q

[n
2 ]∑

k=0

bn−2k(x; q2)
tk

k!q2
= vn(x, t; q).

�

The following easily proved result shows that the q-heat polynomials are closely
related to the discrete q-Hermite I polynomials defined by (see [6])

hn(x; q) = (q; q)n

[ n
2 ]∑

k=0

(−1)kqk(k−1)xn−2k

(q2; q2)k(q; q)n−2k
.

Proposition 5.2. For all nonnegative integer n, t > 0 and x ∈ R we have

v2n(x, t; q) =
q−n(n−1)

(iβ)2n
h2n(iβqnx; q) (64)

and

v2n+1(x, t; q) =
q−n2

(iβ)2n+1
h2n+1(iβqnx; q), (65)

where

β = β(t, q) =

√
1− q

t(1 + q)
. (66)

5.2. q-Associated functions.

Definition 5.1. For n = 0, 1, 2, ... and t > 0, the q-associated functions wn(x, t; q)
is the function defined by

wn(x, t; q) = (−(1 + q))n∂n
q,xk(x, t; q). (67)
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Remark. It is easy to see that the q-associated functions wn(x, t; q), n = 0, 1, 2, ...
are solutions of the q-heat equation (42).
We recall that the discrete q-Hermite II polynomials are given by (see [6])

h̃n(x; q) = (q; q)n

[ n
2 ]∑

k=0

(−1)kq−2nkqk(2k+1)xn−2k

(q2; q2)k(q; q)n−2k

and satisfy the following Rodrigues-type formula

ω(x; q)h̃n(x; q) = (q − 1)nq−
n(n−1)

2 Dn
q [ω(x; q)],

where
ω(x; q) =

1
(−x2; q2)∞

.

The following result gives some relations between the q-source solution and the
discrete q-Hermite II polynomials.

Proposition 5.3. For n = 0, 1, 2, ..., we have

∂2n
q,xk(x, t; q) =

qn(n−2)γ2n

(q − 1)2n
h̃2n(γq−nx; q)k(q−nx, t; q)

and

∂2n+1
q,x k(x, t; q) =

qn(n−1)γ2n+1

q(q − 1)2n+1
h̃2n+1(γq−(n+1)x; q)k(q−(n+1)x, t; q),

where

γ = γ(t, q) = q
1
2 β(t, q) =

√
q(1− q)
t(1 + q)

. (68)

Proof. Using Proposition 2.1, we obtain

∂2n
q,xk(x, t; q) = q−n(n+1)D2n

q [k(., t; q)]oΛn
q (x)

and
∂2n+1

q,x k(x, t; q) = q−(n+1)2D2n+1
q [k(., t; q)]oΛn+1

q (x).
But, the the fact that

k(x, t; q) = C(t; q)w(γx; q)
gives

Dn
q,x[k(x, t; q)] = C(t; q)Dn

q [ω(γx; q)] = C(t; q)γn[Dn
q ω](γx; q).

So, from the Rodrigues-type formula, we get

Dn
q,x[k(x, t; q)] = γn(q − 1)−nq

n(n−1)
2 h̃n(γx; q)k(x, t; q),

which yields to the desired results. �

Proposition 5.4. For n = 0, 1, 2, ..., we have

∂2n
q,xk(x, t; q) =

v2n(q
1
2 x,−t; q−1)

t2n(1 + q)2n
k(q−nx, t; q)

and

∂2n+1
q,x k(x, t; q) = −q−

1
2 v2n+1(q−

1
2 x,−t; q−1)

t2n+1(1 + q)2n+1
k(q−(n+1)x, t; q).
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Proof. It is easy to verify that the discrete q-Hermite II polynomials are related to
the discrete q-Hermite I polynomials by

h̃n(x; q) = i−nhn(ix; q−1) n = 0, 1, 2, .... (69)

Then, for n = 0, 1, 2, ..., we have

h̃2n(γq−nx; q) = i−2nh2n(iγq−nx; q−1) = i−2nh2n(iβq−nq
1
2 x; q−1)

and

h̃2n+1(γq−(n+1)x; q) = i−(2n+1)h2n+1(iγq−(n+1)x; q−1)

= i−(2n+1)h2n+1(iβq−nq−
1
2 x; q−1).

Thus, since
β(t, q) = β(−t, q−1), (70)

the first equality follows from (64) and the fact that

i−2nqn(n−2)γ2n

(1− q)2n
=

qn(n−1)

(iβ)2nt2n(1 + q)2n
,

and the second equality follows from (65) and the relation

i−(2n+1)qn(n−1)γ2n+1

q(1− q)2n+1
=

qn2− 1
2

(iβ)2n+1t2n+1(1 + q)2n+1
.

�

Definition 5.2. We define the polynomials ṽk(x, t; q), n = 0, 1, 2, ..., by

ṽ2n(x, t; q) = v2n(q
1
2 x, t; q−1),

ṽ2n+1(x, t; q) = q−
1
2 v2n+1(q−

1
2 x, t; q−1).

(71)

Note that
lim
q→1

ṽn(x, t; q) = vn(x, t).

The following result summarizes some properties of the polynomials ṽn(x, t; q).

Proposition 5.5.
1) Operation of the operator ∂q on ṽn(x, t; q):

∂q,xṽn(x, t; q) = q−1[n]q−1 ṽn−1(x, t; q), n = 1, 2 , .... (72)

2) The generating function for ṽn(x, t; q) is given by

Expq2

(
tz2
)
e(q−1xz; q2) =

∞∑
n=0

ṽn(x, t; q)
zn

n!q−1
. (73)

3) The ṽn(x, t; q) polynomials are related to the discrete q-Hermite II polynomials
by

ṽ2n(x,−t; q) =
qn(n−1)

β2n
h̃2n(γq−nx; q), n = 0, 1, 2, ...

ṽ2n+1(x,−t; q) =
qn2− 1

2

β2n+1
h̃2n+1(γq−(n+1)x; q), n = 0, 1, 2, ...

(74)

where β and γ are, respectively, defined by (66) and (68).
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Proof. 1) By (1), we have

(2k)!q−1 = q−2k2+k(2k)!q and (2k + 1)!q−1 = q−2k2−k(2k + 1)!q. (75)

So, for all k = 0, 1, 2, ...,

b2k(q
1
2 x; q−2) = b2k(q−1x; q2), (76)

and

q−
1
2 b2k+1(q−

1
2 x; q−2) = b2k+1(q−1x; q2), (77)

where bn(x; q2) is defined by (18).
Then, from (28), we obtain for all k = 1, 2, ...,

∂qb2k(q
1
2 x; q−2) = q−1b2k−1(q−1x; q2) = q−

3
2 b2k−1(q−

1
2 x; q−2)

and

q−
1
2 ∂qb2k+1(q−

1
2 x; q−2) = q−1b2k(q−1x; q2) = q−1b2k(q

1
2 x; q−2).

Thus, (72) follows from these two equalities and the definition of ṽn(x, t; q).

2) By (76) and (77), we have

cos(q−1z; q2) = cos(q
1
2 z; q−2) and sin(q−1z; q2) = q−

1
2 sin(q−

1
2 z; q−2).

Then,

Expq2

(
tz2
)
cos(−iq−1xz; q2) = expq−2

(
tz2
)
cos(−iq

1
2 xz; q−2)

and

Expq2

(
tz2
)
sin(−iq−1xz; q2) = q−

1
2 expq−2

(
tz2
)
sin(−iq−

1
2 xz; q−2).

Finally, (73) follows by replacing x, q by q
1
2 x, q−1 in (56) and by q−

1
2 x, q−1 in (57).

3) Using (70), (64) and (65), we obtain

v2n(q
1
2 x,−t; q−1) =

qn(n−1)

(iβ)2n
h2n(iq

1
2 βq−nx; q−1) =

qn(n−1)

(iβ)2n
h2n(iγq−nx; q−1)

and

v2n+1(q−
1
2 x,−t; q−1) =

qn2

(iβ)2n+1
h2n+1(iq−

1
2 βq−nx; q−1)

=
qn2

(iβ)2n+1
h2n+1(iγq−(n+1)x; q−1),

which together with (69) give the result. �

The following result follows easily from Proposition 5.4, and the relations (71) and
(74). It shows that the q-associated functions wn(x, t; q) are closely related to the
discrete q-Hermite II polynomials and to the polynomials ṽn(x,−t; q).
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Proposition 5.6. For t > 0 and n = 0, 1, 2, ..., we have

w2n(x, t; q) =
ṽ2n(x,−t; q)

t2n
k(q−nx, t; q)

=
qn(n−1)

(tβ)2n
h̃2n(γq−nx; q)k(q−nx, t; q),

w2n+1(x, t; q) =
ṽ2n+1(x,−t; q)

t2n+1
k(q−(n+1)x, t; q)

=
qn2− 1

2

(tβ)2n+1
h̃2n+1(γq−(n+1)x; q)k(q−nx, t; q),

(78)

where β and γ are, respectively, defined by (66) and (68).

5.3. Biorthogonal relation. To establish a biorthogonal relation between the
ṽn(qx,−t; q) and wn(x, t; q), we need the following result.

Lemma 5.1. For t > 0 and n = 1, 2, 3, .., we have∫ ∞

−∞
ṽ2n(qx,−t; q)k(x, t; q)dqx = 0. (79)

Proof. Let t > 0 and n ≥ 1. Using the relation (1), we obtain

ṽ2n(qx,−t; q) = v2n(q
3
2 x,−t; q−1) = (2n)!q−1

n∑
k=0

(−t)n−kq−k2+2kx2k

(n− k)!q−2(2k)!q−1

= q−n2
(2n)!q

n∑
k=0

(−t)n−kq2k2−2nk+2kx2k

(n− k)!q2(2k)!q
.

The lefthand side of (79) is then equal to

C(t; q)q−n2
(2n)!q

n∑
k=0

(−t)n−kq2k2−2nk+2k

(n− k)!q2(2k)!q

∫ ∞

−∞
expq2

(
− qx2

t(1 + q)2

)
x2kdqx.

But, taking λ =
q(1− q)
t(1 + q)

in (50), we obtain∫ ∞

−∞
expq2

(
− qx2

t(1 + q)2

)
x2kdqx = 2cq(λ)

q−k2−k(q; q2)k(1 + q)ktk

(1− q)k
,

where cq(λ) is defined by (51).

Then, since Cq(t, λ) =
1

2cq(λ)
, the q-integral in (79) is equal to

q−n2
(2n)!q(−t)n(1− q2)n

n∑
k=0

(−1)kqk2−2nk+k

(q2; q2)n−k(q2; q2)k
,

which is equal to

q−n2
(2n)!q(−t)n

n!q2

n∑
k=0

(
n
k

)
q2

qk(k−1)
(
−q−2n+2

)k
.

Hence, from the q-binomial theorem (2), we get∫ ∞

−∞
ṽ2n(qx,−t; q)k(x, t; q)dqx =

q−n2
(2n)!q(−t)n

n!q2
(q−2n+2; q2)n = 0.
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�

Theorem 5.1. For 0 < t < ∞, m, n = 0, 1, 2, .., we have∫ ∞

−∞
ṽn(qx,−t; q)wm(x, t; q)dqx = (1 + q)nn!q−1δm,n.

Proof. First, from (72), we get

∂q,xṽn(qx, t; q) = [n]q−1 ṽn−1(qx, t; q). (80)

In what follows, we will use the letter A for an unessential constant that may vary
from equation to another.
If m > n, we have by q-integration by parts (9) and the relation (80),∫ ∞

−∞
ṽn(qx,−t; q)wm(x, t; q)dqx = A

∫ ∞

−∞
ṽn(qx,−t; q)∂m

q k(x, t; q)dqx

= A

∫ ∞

−∞
ṽ0(qx,−t; q)∂m−n

q k(x, t; q)dqx

= 0.

If m < n, we have∫ ∞

−∞
ṽn(qx,−t; q)wm(x, t; q)dqx = A

∫ ∞

−∞
ṽn−m(qx,−t; q)k(x, t; q)dqx.

In case n −m is odd, the q-integrand is an odd function. So, the above q-integral
vanishes.
In case n−m is even, by (79) the above q-integral is also null.
If m = n, we have∫ ∞

−∞
ṽn(qx,−t; q)wn(x, t; q)dqx = (−(1 + q))n

∫ ∞

−∞
ṽn(qx,−t; q)∂n

q k(x, t; q)dqx.

Then, using the q-integration by parts (9) and the relations (80), and (55), we
obtain∫ ∞

−∞
ṽn(qx,−t; q)wn(x, t; q)dqx = (1 + q)nn!q−1

∫ ∞

−∞
ṽ0(qx,−t; q)k(x, t; q)dqx

= (1 + q)nn!q−1

∫ ∞

−∞
k(x, t; q)dqx

= (1 + q)nn!q−1 .

�

6. Expansions in terms of the q-heat polynomials and q-associated
functions

6.1. Some useful asymptotic estimations. For further study, it is essential to
know the behavior of the functions vn(x, t; q) and wn(x, t; q) for large integer n.
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Proposition 6.1. For x ∈ R, t > 0, and n = 0, 1, 2, ..., we have

|v2n(x, t; q)| ≤ (2n)!qtn

n!q2
Eq2

(
x2

t

)
(81)

and

|v2n+1(x, t; q)| ≤ (2n + 1)!qtn

n!q2
|x|Eq2

(
x2

t

)
. (82)

Proof. Let x ∈ R, t > 0, and n = 0, 1, 2, ....
Using the fact that (2k)!q ≥ k!q2 , we obtain

|v2n(x, t; q)| ≤ (2n)!qtn

n!q2

n∑
k=0

n!q2qk(k−1)

(n− k)!q2k!q2

(
x2

t

)k

.

Then, (81) follows from the q-binomial theorem (2) and (82) follows from (81)
together with the following easily verified inequality

|v2n+1(x, t; q)| ≤ |x|[2n + 1]qv2n(x, t; q).

�

Lemma 6.1. Let t0 > 0 and x0 6= 0. If the series
∑

n

anvn(x0, t0; q) converges

absolutely, then

a2n = O

(
n!q2

(2n)!qtn0

)
and a2n+1 = O

(
n!q2

(2n + 1)!qtn0

)
, as n →∞. (83)

Proof. Let t0 > 0 and x0 6= 0. For all n ∈ N, we have

|v2n(x0, t0; q)| ≥ |v2n(0, t0; q)| =
(2n)!qtn0

n!q2
(84)

and

|v2n+1(x0, t0; q)| ≥ |x0|
(2n + 1)!qtn0

n!q2
. (85)

If the series
∑

n

anvn(x0, t0; q) converges absolutely, then its general term anvn(x0, t0; q)

tends to 0 as n →∞. Hence, by (84) and (85), we get the desired conclusion. �

Replacing λ by (1− q2)t in (49) and in (50), we obtain:

Lemma 6.2. For n = 0, 1, 2, ..., we have∫ ∞

−∞
expq2(−ty2)y2n+1dqy =

2q−n(n+1)n!q2

(1 + q)tn+1
(86)

and ∫ ∞

−∞
expq2(−ty2)y2ndqy = 2cq((1− q2)t)

q−n2
(q; q2)n

(1− q2)ntn
, (87)

where cq(.) is given by (51).
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Proposition 6.2. For all x ∈ Rq, t > 0 and n = 0, 1, 2, ..., we have

|w2n(x, t; q)| ≤ M
(2n)!q−1

n!q−2tn
(88)

and

|w2n+1(x, t; q)| ≤ M
(2n + 1)!q−1

n!q−2tn
, (89)

where M is a constant independent of x and n.

Proof. From Proposition 4.4, we have

k(x, t; q) = K2

∫ ∞

−∞
expq2

(
−ty2

)
e(ixy; q2)dqy, x ∈ Rq.

Then, from (67) and (21), we get for n = 0, 1, 2, ... and x ∈ Rq,

|wn(x, t; q)| = K2

∣∣∣∣∫ ∞

−∞
expq2

(
−ty2

)
e(ixy; q2) [−i(1 + q)y]n dqy

∣∣∣∣
≤ 4K2(1 + q)n

(q; q)∞

∫ ∞

0

expq2

(
−ty2

)
yndqy.

(90)

But, It follows from (1) that

(2n)!q−1

n!q−2
= q−n2 (2n)!q

n!q2
=

q−n2
(1 + q)n(q; q2)n

(1− q)n
(91)

and
(2n + 1)!q−1

n!q−2
= q−n2−2n (2n + 1)!q

n!q2
≥ q−n(n+1)(1 + q)2nn!q2 . (92)

Then, by (87) and (86), we obtain

(1 + q)2n

∫ ∞

−∞
expq2(−ty2)y2ndqy ≤ M

(2n)!q−1

n!q−2tn
(93)

and

(1 + q)2n+1

∫ ∞

−∞
expq2(−ty2)y2n+1dqy ≤ M

(2n + 1)!q−1

n!q−2tn
, (94)

with M =
4K2

(q; q)∞
max

[
cq

(
(1− q2)t

)
,
1
t

]
. �

6.2. Expansion in series of q-heat polynomials. Functions in class Eσ,q defined
by (35) serve well in q-integral representation of solution of (42), at least if the
solution is obtained by a power series. For this purpose, we need a preliminary
result.

Lemma 6.3. For x ∈ R, t > 0 and n = 0, 1, 2, ..., we have∫ ∞

−∞
k(y, t; q)pn,q (|x|, |y|) dqy ≤ vn(|x|, t; q) +

2C(t; q)
(1− q)[n + 1]q

vn+1

(
|x|, t

q
; q
)

,

(95)
where C(t; q) is defined by (44).
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Proof. Two cases arise according to n is even or odd.
If n is even,∫ ∞

−∞
k(y, t; q)p2n,q(|x|, |y|)dqy

= (2n)!q

[
n∑

k=0

b2n−2k(|x|; q2)
∫ ∞

−∞
k(y, t; q)b2k(|y|; q2)dqy

+
n−1∑
k=0

b2n−1−2k(|x|; q2)
∫ ∞

−∞
k(y, t; q)b2k+1(|y|; q2)dqy

]
.

But, from (53), we have

(2n)!q
n∑

k=0

b2n−2k(|x|; q2)
∫ ∞

−∞
k(y, t; q)b2k(|y|; q2)dqy = v2n(|x|, t; q)

and from (54), we have∫ ∞

−∞
k(y, t; q)b2k+1(|y|; q2)dqy =

2C(t; q)tk+1(1 + q)2k+1k!q2

qk+1(2k + 1)!q
.

Then, using the fact that

(1 + q)2k+1k!q2

(2k + 1)!q
=

(1− q2)k+1

(q; q2)k+1
≤ 1

(1− q)(k + 1)!q2
,

we obtain

(2n)!q
n−1∑
k=0

b2n−1−2k(|x|; q2)
∫ ∞

−∞
k(y, t; q)b2k+1(|y|; q2)dqy

≤ 2C(t; q)(2n)!q
(1− q)

n−1∑
k=0

b2(n−(k+1))+1(|x|; q2)
tk+1

qk+1(k + 1)!q2
,

≤ 2C(t; q)(2n)!q
(1− q)

n∑
k=0

b2(n−k)+1(|x|; q2)
tk

qkk!q2

=
2C(t; q)

(1− q)[2n + 1]q
v2n+1

(
|x|, t

q
; q
)

.

In the same way, we prove the inquality (95) when n is odd. �

Theorem 6.1. Let σ > 1 and f ∈ Eσ,q. Then, the q-integral

u(x, t; q) =
∫ ∞

−∞
k(y, t; q)Ty,q(f)(x)dqy, (96)

converges absolutely in the strip 0 < t < qσ, and

u(x, t; q) =
∞∑

n=0

∂n
q f(0)
n!q

vn(x, t; q). (97)
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Proof. Let f ∈ Eσ,q, σ > 1. Then, from Proposition 3.2, Ty,qf(x) is well defined
and we have∫ ∞

−∞
k(y, t; q)Ty,q(f)(x)dqy =

∫ ∞

−∞
k(y, t; q)

∞∑
n=0

∂n
q f(0)
n!q

pn,q(x, y)dqy

=
∞∑

n=0

∂n
q f(0)
n!q

∫ ∞

−∞
k(y, t; q)pn,q(x, y)dqy

=
∞∑

n=0

∂n
q f(0)
n!q

vn(x, t; q).

by using (63).
The absolute convergence of the q-integral and the interchange of the sum and the
q-integral, in the previous equation, is legitimated by the Fubini’s theorem: since
f ∈ Eσ,q, then by the relations (95), (81) and (82), we have

∞∑
n=0

|∂n
q f(0)|
n!q

∫ ∞

−∞
k(y, t; q)pn,q(|x|, |y|)dqy

≤ A

∞∑
n=0

n!q2

(2n)!qσn

∫ ∞

−∞
k(y, t; q)p2n,q(|x|, |y|)dqy

+ A

∞∑
n=0

n!q2

(2n + 1)!qσn

∫ ∞

−∞
k(y, t; q)p2n+1,q(|x|, |y|)dqy,

≤ A

∞∑
n=0

(
t

qσ

)n

< ∞, for all 0 < t < σq.

Here, A is an unessential constant that may vary from an equation to another. �

Remark. Note that since the general terms of the series (97) are solutions of the
q-heat equation (42), then the function defined by this series is also a solution.

Theorem 6.2. Suppose that f is defined near 0 by a power series of positive radius
of convergence and the series (97) converges absolutely in the strip 0 < t ≤ σ. Then,
u(x, t; q) has the q-integral representation (96) in the strip 0 < t < qσ, and f ∈ Eσ,q.

Proof. From the hypothesis of the theorem, f is infinitely differentiable at 0. So, it
is infinitely q-differentiable at 0 and by Proposition 2.1, we have for all nonnegative
integer n,

q[ n
2 ]([ n

2 ]+1)
∂n

q f(0)
n!q

=
f (n)(0)

n!
.

If (97) converges absolutely for 0 < t ≤ σ. Then, in particular, it converges for
t0 = σ. By Lemma 6.1, we have

∂2n
q f(0)
(2n)!q

= O

(
n!q2

(2n)!qσn

)
and

∂2n+1
q f(0)

(2n + 1)!q
= O

(
n!q2

(2n + 1)!qσn

)
, n →∞.

(98)
So,

f (2n)(0)
(2n)!

= O

(
qn(n+1)n!q2

(2n)!σn

)
and

f (2n+1)(0)
(2n + 1)!

= O

(
qn(n+1)n!q2

(2n + 1)!σn

)
, n →∞.
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Then, f is entire and owing to the estimations (98), it belongs to Eσ,q.
Now, the same arguments as those used in Theorem 6.1 show that u(x, t; q) has the
q-integral representation (96) in the strip 0 < t < qσ. �

Remark. It follows from (60) that if

u(x, t; q) =
∞∑

n=0

anvn(x, t; q), 0 ≤ t < σ,

then we have

an =
[∂n

q,xu](0, 0; q)
n!q

, n = 0, 1, 2, ...

6.3. Expansions in series of q-associated functions. In this subsection, we
need a new class of functions of real variable, useful for the validity of expansions
in terms of the q-associated functions wn(x, t; q).

Definition 6.1. For, σ > 0, we write Ẽσ,q the set of functions f satisfying:

∃M > 0 :



f(x) =
∞∑

n=0

anxn is a power series,

|a2n| ≤
Mn!q−2(1 + q)2nσn

(2n)!q−1
, ∀n ∈ N,

|a2n+1| ≤
Mn!q−2(1 + q)2n+1σn

(2n + 1)!q−1
, ∀n ∈ N.

(99)

Note that by the relations (91) and (92), the power series defining the functions
f ∈ Ẽσ,q are of radius of convergence R = +∞.
Now, we give a sufficient condition for the possibility to expand a solution of the
q-heat equation in terms of wn(x, t; q).

Theorem 6.3. If

u(x, t; q) = K2

∫ ∞

−∞
expq2(−ty2)e(ixy; q2)φ(y)dqy, (100)

with φ(y) =
∞∑

n=0

anyn ∈ Ẽσ,q, then

u(x, t; q) =
∞∑

n=0

an

[−i(1 + q)]n
wn(x, t; q), x ∈ R̃q, t > σ ≥ 0. (101)

The infinite series (101) converges absolutely.

Proof. Let φ(y) =
∞∑

n=0

anyn ∈ Ẽσ,q. Then,

∫ ∞

−∞
expq2(−ty2)e(ixy, q2)φ(y)dqy =

∫ ∞

−∞

∞∑
n=0

expq2(−ty2)e(ixy, q2)anyndqy.

(102)
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But, using (21), we get by the help of (93) and (94),
∞∑

n=0

∫ ∞

−∞

∣∣expq2(−ty2)e(ixy, q2)anyn
∣∣ dqy ≤ A

∞∑
n=0

|an|
∫ ∞

−∞
expq2(−ty2)|y|ndqy

≤ A

∞∑
n=0

|a2n|
∫ ∞

−∞
expq2(−ty2)|y|2ndqy + A

∞∑
n=0

|a2n+1|
∫ ∞

−∞
expq2(−ty2)|y|2n+1dqy

≤ A

∞∑
n=0

(2n)!q−1 |a2n|
n!q−2(1 + q)2ntn

+ A

∞∑
n=0

(2n + 1)!q−1 |a2n+1|
n!q−2(1 + q)2n+1tn

< ∞,

since φ ∈ Ẽσ,q.
So, we can exchange the order of the sum and the q-integral signs in (102) and the
infinite series (101) converges absolutely. Moreover, by the use of (90), we obtain

u(x, t; q) = K2

∫ ∞

−∞
expq2(−ty2)e(ixy, q2)

[ ∞∑
n=0

anyn

]
dqy

=
∞∑

n=0

an

[−i(1 + q)]n
wn(x, t; q),

(103)

which achieves the proof. �

6.4. Examples.

Example 1. Take f(x) = e(iλx; q2) =
∞∑

n=0

bn(iλx; q2), λ ∈ Rq, x ∈ R.

By (30), we have

u(x, t; q) =
∫ ∞

−∞
k(y, t; q)Ty,qf(x)dqy = e(ixλ; q2)

∫ ∞

−∞
k(y, t; q)e(iyλ; q2)dqy.

By Proposition 4.4, we obtain

u(x, t; q) = expq2

(
−tλ2

)
e(ixλ; q2)

and by Theorem 6.2, we get

u(x, t; q) =
∞∑

n=0

(iλ)2nv2n(x, t; q)
(2n)!q

+
∞∑

n=0

(iλ)2n+1v2n+1(x, t; q)
(2n + 1)!q

.

By (81) and (82), these series converge in the strip 0 ≤ t <
1

(1− q2)λ2
.

Consequently,

expq2 (−t) cos(x; q2) =
∞∑

n=0

(−1)nv2n(x, t; q)
(2n)!q

,

expq2 (−t) sin(x; q2) =
∞∑

n=0

(−1)nv2n+1(x, t; q)
(2n + 1)!q

.
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Figure 2: Comparison of the exact solution u(x, t) = e−t cos(x) (dashed line) and
the 5 and 10 q-heat polynomials expansion (solid line) at q = 0.99 for t = 0.001.
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Figure 3: Comparison of the exact solution u(x, t) = e−t sin(x) (dashed line) and
the 5 and 10 q-heat polynomials expansion (solid line) at q = 0.99 for t = 0.001.

Example 2: Let a ∈ Rq. The q-translation of the q-heat kernel k(x, t; q) is given
by

Ta,qk(x, t; q) =
∞∑

n=0

bn(a; q2)∂n
q k(x, t; q)

and by (67), we have

Ta,qk(x, t; q) =
∞∑

n=0

bn(ia; q2)
[−i(1 + q)]n

wn(x, t; q). (104)

Let σ be a real such that σ >
(1− q)a2

q(1 + q)
and consider the function

φ(y) =
∞∑

n=0

bn(ia; q2)yn = e(iay; q2). (105)
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Using the fact that 0 ≤ a2

q(1 + q)2σ
<

1
1− q2

, we get for all nonnegative integer n,(
a2

q(1+q)2σ

)n

n!q2
<

1
(q2; q2)∞

.

Then by (91), we obtain

|b2n(ia; q2)|(2n)!q−1

n!q−2(1 + q)2nσn
=

(
qa2

(1+q)2σ

)n

n!q2
≤

(
a2

q(1+q)2σ

)n

n!q2
≤ 1

(q2; q2)∞
,

and by (92), we have

|b2n+1(ia; q2)|(2n + 1)!q−1

n!q−2(1 + q)2n+1σn
=

|a|
1 + q

.

(
a2

q(1+q)2σ

)n

n!q2
≤ |a|

(1 + q)(q2; q2)∞
.

We conclude that φ(y) ∈ Ẽσ,q, and by Theorem 6.3 the series (104) converges
absolutely for x ∈ R̃q, t > σ ≥ 0. So, Ta,qk(x, t; q) is well defined and we have

Ta,qk(x, t; q) = K2

∫ ∞

−∞
expq2(−ty2)e(ixy; q2)e(iay; q2)dqy

= K

∫ ∞

−∞
e(ixy; q2)Fq(k(., t; q))(y)e(iay; q2)dqy.

Note that, the q-integral representation of Ta,qk(x, t; q) coincides with the Rubin’s
one (see [9]). In a formal limit as q goes to 1−, we obtain the classical result in [10]:

k(x + y, t) =
∞∑

n=0

(−y)n

2nn!
wn(x, t), 0 < t < ∞.
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Figure 4: Comparison of the exact solution k(x − 1, t) =
e−

(x−1)2

4t

(4πt)
1
2

(dashed line)

and the 5 q-associated functions expansion (solid line) at q = 0.99 for t = 0.5.
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