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BOUNDED SOLUTIONS FOR FRACTIONAL ORDER

DIFFERENTIAL EQUATIONS ON THE HALF-LINE

(COMMUNICATED BY CLAUDIO CUEVAS)

MOUFFAK BENCHOHRA, FARIDA BERHOUN, GASTON N’GUÉRÉKATA

Abstract. We provide in this paper, sufficient conditions for the existence

of bounded solutions for a class of initial value problem on the half-line for
fractional differential equations involving Caputo fractional derivative with a
nonlinear term depending on the derivative, using the Schauder fixed point
theorem combined with the diagonalization process.

1. Introduction

In this paper we investigate the existence of bounded solutions for the following
class of fractional order differential equations

cDαy(t) = f(t, y(t),c Dα−1y(t)), t ∈ J := [0,∞), 1 < α ≤ 2, (1.1)

y(0) = y0, y is bounded on J, (1.2)

where cDα is the Caputo fractional derivative of order 1 < α ≤ 2, f : J × R → R
is a continuous function, y0 ∈ R.
Differential equations of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications in viscoelasticity, electrochemistry, con-
trol, porous media, electromagnetic, etc. (see [14, 17, 22, 23, 24]). There has
been a significant development in the study of fractional differential equations in
recent years; see the monographs of Kilbas et al [19], Lakshmikantham et al. [20],
Podlubny [23], Samko et al. [25]. For some recent contributions on fractional differ-
ential equations, see [1, 5, 7, 8, 9, 10, 11, 12, 13, 21, 26] and the references therein.
For more details on the geometric and physical interpretation for fractional deriva-
tives of both the Riemann-Liouville and Caputo types see [16, 24]. Very recently,
Agarwal et al. [2] have considered a class of boundary value problems involving
Riemann-Liouville fractional derivative on the half line. They used the diagonaliza-
tion process combined with the nonlinear alternative of Leray- Schauder type. In
[6], by using Schauder’s fixed point theorem [15] combined with the diagonalization

2000 Mathematics Subject Classification. 26A33, 26A42, 34A12.
Key words and phrases. Caputo fractional derivative; fractional integral; fixed point; bounded

solutions; diagonalization process.
c⃝2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
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process, the authors discussed the existence of bounded solutions of the following
problem on unbounded domain{

cDαy(t) = f(t, y(t)), t ∈ J := [0,∞),
y(0) = y0, y is bounded on J.

(1.3)

Let us mention that the diagonalization process method was widely used for integer
order differential equations; see for instance [3, 4]. Notice that the right hand
side in (1.1) depends on the fractional derivative. Hence our results extend and
complement those with integer order derivative [3, 4] and those considered with a
right hand side independent of the derivative [6].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By C(J,R) we denote the Banach space of all
continuous functions from J into R with the norm

∥y∥∞ := sup{|y(t)| : t ∈ J}.

Definition 2.1:([19, 23]). The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t)∗φα(t), where

φα(t) =
tα−1

Γ(α) for t > 0, and φα(t) = 0 for t ≤ 0, and φα → δ(t) as α → 0, where δ

is the delta function.
Definition 2.2:([19, 23]). For a function h given on the interval [a, b], the αth
Riemann-Liouville fractional-order derivative of h, is defined by

(Dα
a+h)(t) =

1

Γ(N − α)

(
d

dt

)N ∫ t

a

(t− s)N−α−1h(s)ds.

Here N = [α] + 1 and [α] denotes the integer part of α.
Definition 2.3:([18]). For a function h given on the interval [a, b], the Caputo
fractional-order derivative of h, is defined by

(cDα
a+h)(t) =

1

Γ(N − α)

∫ t

a

(t− s)N−α−1h(N)(s)ds.

Lemma 2.4:([27]) Let α > 0, then the differential equation

cDαh(t) = 0

has solutions

h(t) = c0 + c1t+ c2t
2 + . . .+ cN−1t

N−1, ci ∈ R, i = 0, 1, 2, . . . , N − 1, N = [α] + 1.

Lemma 2.5:([27]) Let α > 0, then

IαcDαh(t) = h(t) + c0 + c1t+ c2t
2 + . . .+ cN−1t

N−1

for some ci ∈ R, i = 0, 1, 2, . . . , N − 1, N = [α] + 1.



64 M. BENCHOHRA, F. BERHOUN, G. N’GUÉRÉKATA

3. Existence of Solutions

Let n ∈ N, and consider the space

C̃([0, n],R) = {y ∈ C([0, n],R) such that cDα−1y ∈ C([0, n],R)}.

On C̃([0, n],R) we define the following norm

∥y∥n = max(∥y∥, ∥cDα−1y∥),

where ∥y∥ = sup0≤t≤n |y(t)| and ∥cDα−1y∥ = sup0≤t≤n |cDα−1y(t)|.
Lemma 3.1: (C̃([0, n],R), ∥.∥n) is a Banach space.

Proof. Let {yp}∞p=0 be a Cauchy sequence in the space (C̃([0, n],R), ∥.∥n), then,

∀ϵ > 0, ∃N > 0 such that |yp − ym| < ϵ for any p,m > N.

Thus {yp(t)}∞p=0 is a Cauchy sequence in R, then {yp(t)}∞p=0 converges to some y(t)

in R and we can verify easily that y ∈ C̃([0, n],R).
Moreover, {cDα−1yp}∞p=0 converges uniformly to some z ∈ C̃([0, n],R).
Next we need to prove that z =c Dα−1y.
According to the uniform convergence of {cDα−1yp(t)}∞p=0 and the Dominated Con-
vergence Theorem, we can arrive at

z(t) = lim
p→+∞

cDα−1yp(t) = lim
p→+∞

1

Γ(2− α)

∫ t

0

(t− s)1−αy′p(s)ds,

so,

z(t) =c Dα−1y(t),

which completes the proof of Lemma 3.1. �

First we address a boundary value problem on a bounded domain. Let n ∈ N,
and consider the boundary value problem

cDαy(t) = f(t, y(t),c Dα−1y(t)), t ∈ Jn := [0, n], 1 < α ≤ 2, (3.1)

y(0) = y0, y′(n) = 0. (3.2)

Let h : Jn → R be continuous, and consider the linear fractional order differential
equation

cDαy(t) = h(t), t ∈ Jn, 1 < α ≤ 2. (3.3)

We shall refer to (3.3)-(3.2) as (LP). By a solution to (LP) we mean a function
y ∈ C2(Jn,R) that satisfies equation (3.3) on Jn and condition (3.2).

We need the following auxiliary result.
Lemma 3.2: The unique solution of the problem (LP) is given by

y(t) = y0 −
t

Γ(α− 1)

∫ n

0

(n− s)α−2h(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds. (3.4)

Proof. Let y ∈ C̃(Jn,R) be a solution to (LP). Using Lemma 2, we have that

y(t) = Iαh(t)− c0 − c1t =

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds− c0 − c1t,
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for arbitrary constants c0 and c1. By derivation we have

y′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
h(s)ds− c1.

Applying the boundary condition (3.2), we find that

c0 = −y0,

c1 =

∫ n

0

(n− s)α−2

Γ(α− 1)
h(s)ds.

�

Our main result reads as follow.
Theorem 3.3: Assume that

(H) There exist nonnegative functions a, b, c ∈ L1(Jn,R) such that

|f(t, u, v)| ≤ a(t)|u|+ b(t)|v|+ c(t) for each t ∈ Jn and all u, v ∈ R.

Then BVP (3.1)-(3.2) has at least one solution on Jn.

Proof. The proof will be given in two parts.
Part I: We begin by showing that (3.1)-(3.2) has a solution yn ∈ C̃(Jn,R).

Consider the operator N : C̃(Jn,R) −→ C̃(Jn,R) defined by

(Ny)(t) = y0 −
t

Γ(α− 1)

∫ n

0

(n− s)α−2f(s, y(s),c Dα−1y(s))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s),c Dα−1y(s))ds.

Thus

cDα−1(Ny)(t) = − t2−α

Γ(3−α)

∫ n

0
(n−s)α−2

Γ(α−1) f(s, y(s),c Dα−1y(s))ds

+
∫ t

0
f(s, y(s),c Dα−1y(s))ds.

Using continuity of f we can conclude that Ny(t) and cDα−1Ny(t) are continuous
on J .

We shall show thatN satisfies the assumptions of Schauder’s fixed point theorem.
The proof will be given in several steps.

First, choose R a number such that

R > max

(
|y0|Γ(α) + 2nα−1c

Γ(α)− 2nα−1c
,

(Γ(3− α)Γ(α− 1) + 1)c

Γ(3− α)Γ(α− 1)− (Γ(3− α)Γ(α− 1) + 1)c

)
(3.5)

where c =
∫ n

0
c(s)ds, c =

∫ n

0
[a(s) + b(s)]ds.

Set

C̃R = {y ∈ C̃(Jn,R), ∥y∥n ≤ R}.
It is clear that C̃R is a closed, convex subset of C̃(Jn,R).

Step 1: N(C̃R) ⊂ C̃R.
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Let y ∈ C̃R, we show that Ny ∈ C̃R. For each t ∈ Jn, we have

|(Ny)(t)|

≤ |y0|+
n

Γ(α− 1)

∫ n

0

(n− s)α−2|f(s, y(s),c Dα−1y(s))|ds

+
1

Γ(α)

∫ n

0

(n− s)α−1|f(s, y(s),c Dα−1y(s))|ds

≤ |y0|+
n

Γ(α− 1)

∫ n

0

(n− s)α−2|f(s, y(s),c Dα−1y(s))|(1 + n− s

n(α− 1)
)ds

≤ |y0|+
n

Γ(α− 1)

α

α− 1

∫ n

0

(n− s)α−2[a(s)|y(s)|+ b(s)|cDα−1y(s)|+ c(s)]ds

≤ |y0|+
nα

Γ(α)

∫ n

0

(n− s)α−2[∥y∥n(a(s) + b(s)) + c(s)]ds

≤ |y0|+
nα−1α

Γ(α)
[Rc+ c] ≤ R.

In other hand

|cDα−1(Ny)(t)| ≤ n2−α

Γ(3− α)

∫ n

0

(n− s)α−2

Γ(α− 1)
|f(s, y(s),c Dα−1y(s))|ds

+
∫ n

0
|f(s, y(s),c Dα−1y(s))|ds

≤
(
1 +

1

Γ(3− α)Γ(α− 1)

)
[Rc+ c] ≤ R.

Then

∥Ny∥n ≤ R.

Step 2: N is continuous.

Let {yq} be a sequence such that yq → y in C̃(Jn,R), Then for each t ∈ Jn

|(Nyq)(t)− (Ny)(t)|

≤ n

Γ(α− 1)

∫ n

0

(n− s)α−2|f(s, yq(s),c Dα−1yq(s))− f(s, y(s),c Dα−1y(s))|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, yq(s),c Dα−1yq(s))− f(s, y(s),c Dα−1y(s))|ds,

and

|cDα−1(Nyq)(t)−c Dα−1(Ny)(t)|

≤ t2−α

Γ(3− α)

∫ n

0

(n− s)α−2

Γ(α− 1)
|f(s, yq(s),c Dα−1yq(s))− f(s, y(s),c Dα−1y(s))|ds

+

∫ t

0

|f(s, yq(s),c Dα−1yq(s))− f(s, y(s),c Dα−1y(s))|ds.

Since f is a continuous function, the right-hand side of the above inequalities tends
to zero as q tends to ∞. Then

∥Nyq −Ny∥n → 0 as q → ∞.

Step 3: N maps C̃R into a bounded set of C̃(Jn,R)

Since N(C̃R) ⊂ C̃R, then N(C̃R) is bounded.

Step 4: N maps C̃R into an equicontinuous set of C̃(Jn,R).
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Let τ1, τ2 ∈ Jn, τ1 < τ2, and y ∈ C̃R. Then

|(Ny)(τ2)− (Ny)(τ1)|

≤ τ2 − τ1
Γ(α− 1)

∫ n

0

(n− s)α−2|f(s, y(s),c Dα−1y(s))|ds

+
1

Γ(α)

∫ τ1

0

|(τ1 − s)α−1 − (τ2 − s)α−1||f(s, y(s),c Dα−1y(s))|ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1|f(s, y(s),c Dα−1y(s))|ds,

≤ τ2 − τ1
Γ(α− 1)

∫ n

0

(n− s)α−2[a(s)|y(s)|+ b(s)|cDα−1y(s)|+ c(s)]ds

+
1

Γ(α)

∫ τ1

0

|(τ1 − s)α−1 − (τ2 − s)α−1[a(s)|y(s)|+ b(s)|cDα−1y(s)|+ c(s)]ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1[a(s)|y(s)|+ b(s)|cDα−1y(s)|+ c(s)]ds

≤ τ2 − τ1
Γ(α− 1)

∫ n

0

(n− s)α−2[(a(s) + b(s))∥y∥n + c(s)]ds

+
1

Γ(α)

∫ τ1

0

|(τ1 − s)α−1 − (τ2 − s)α−1[(a(s) + b(s))∥y∥n + c(s)]ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1[(a(s) + b(s))∥y∥n + c(s)]ds

≤ τ2 − τ1
Γ(α− 1)

∫ n

0

(n− s)α−2[(a(s) + b(s))R+ c(s)]ds

+
1

Γ(α)

∫ τ1

0

|(τ1 − s)α−1 − (τ2 − s)α−1[(a(s) + b(s))R+ c(s)]ds

+
1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1[(a(s) + b(s))R+ c(s)]ds

and

|cDα−1(Ny)(τ2)−c Dα−1(Ny)(τ1)|

≤ τ2−α
2 − τ2−α

1

Γ(3− α)

∫ n

0

(n− s)α−2

Γ(α− 1)
|f(s, y(s),c Dα−1y(s))|ds

+

∫ τ2

τ1

|f(s, y(s),c Dα−1y(s))|ds

≤ τ2−α
2 − τ2−α

1

Γ(3− α)

∫ n

0

(n− s)α−2

Γ(α− 1)
[a(s)|y(s)|+ b(s)|cDα−1y(s)|+ c(s)]ds

+

∫ τ2

τ1

[a(s)|y(s)|+ b(s)|cDα−1y(s)|+ c(s)]ds

≤ τ2−α
2 − τ2−α

1

Γ(3− α)

∫ n

0

(n− s)α−2

Γ(α− 1)
[(a(s) + b(s))R+ c(s)]ds

+

∫ τ2

τ1

[(a(s) + b(s))R+ c(s)]ds.

As τ1 → τ2, the right-hand side of the above inequalities tends to zero. As a
consequence of Steps 2 to 4 together with the Arzelà-Ascoli theorem, we conclude
that N is completely continuous.

Therefore, we deduce from Schauder’s fixed point theorem that N has a fixed
point yn in C̃(Jn,R) which is a solution of BVP (3.1)–(3.2) with

|yn(t)| ≤ R for each t ∈ Jn.
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Part II: The diagonalization process

We now use the following diagonalization process. For k ∈ N, let

uk(t) =

{
ynk

(t), t ∈ [0, nk],
ynk

(nk) t ∈ [nk,∞).
(3.6)

Here {nk}k ∈ N∗ is a sequence of numbers satisfying

0 < n1 < n2 < . . . < nk < . . . ↑ ∞.

Let S = {uk}∞k=1. Notice that

|unk
(t)| ≤ R for t ∈ [0, n1], k ∈ N.

Also for k ∈ N and t ∈ [0, n1] we have

unk
(t) = y0 −

t

Γ(α− 1)

∫ n1

0

(n1 − s)α−2f(s, unk
(s),c Dα−1unk

(s))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, unk
(s),c Dα−1unk

(s))ds.

for k ∈ N and t, x ∈ [0, n1] we have

|unk
(t)− unk

(x)| ≤ |x− t|
Γ(α− 1)

∫ n1

0

(n1 − s)α−2|f(s, unk
(s),c Dα−1unk

(s))|ds

+
1

Γ(α)

∫ t

0

|(t− s)α−1 − (x− s)α−1||f(s, unk
(s),c Dα−1unk

(s))|ds

+
1

Γ(α)

∫ t

x

(x− s)α−1|f(s, unk
(s),c Dα−1unk

(s))|ds.

In other hand

|cDα−1unk
(t)−c Dα−1unk

(x)|

≤ |t2−α − x2−α|
Γ(3− α)

∫ n

0

(n1 − s)α−2

Γ(α− 1)
|f(s, unk

(s),c Dα−1unk
(s))|ds

+

∫ t

x

|f(s, unk
(s),c Dα−1unk

(s))|ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗
1 of N and a

function z1 ∈ C̃([0, n1],R) with unk
→ z1 in C̃([0, n1],R) as k → ∞ through N∗

1 .
Let N1 = N∗

1 \{1}. Notice that

|unk
(t)| ≤ R for t ∈ [0, n2], k ∈ N.

Also for k ∈ N and t, x ∈ [0, n2] we have

|unk
(t)− unk

(x)| ≤ |x− t|
Γ(α− 1)

∫ n2

0

(n2 − s)α−2|f(s, unk
(s),c Dα−1unk

(s))|ds

+
1

Γ(α)

∫ t

0

|(t− s)α−1 − (x− s)α−1||f(s, unk
(s),c Dα−1unk

(s))|ds

+
1

Γ(α)

∫ t

x

(x− s)α−1|f(s, unk
(s),c Dα−1unk

(s))|ds.
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In other hand

|cDα−1unk
(t)−c Dα−1unk

(x)|

≤ |t2−α − x2−α|
Γ(3− α)

∫ n

0

(n2 − s)α−2

Γ(α− 1)
|f(s, unk

(s),c Dα−1unk
(s))|ds

+

∫ t

x

|f(s, unk
(s),c Dα−1unk

(s))|ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗
2 of N1 and

a function z2 ∈ C̃([0, n2],R) with unk
→ z2 in C̃([0, n2],R) as k → ∞ through

N∗
2 . Note that z1 = z2 on [0, n1] since N∗

2 ⊆ N1. Let N2 = N∗
2 \{2}. Proceed

inductively to obtain for m ∈ {3, 4, . . .} a subsequence N∗
m of Nm−1 and a function

zm ∈ C̃([0, nm],R) with unk
→ zm in C̃([0, nm],R) as k → ∞ through N∗

m. Let
Nm = N∗

m\{m}. Define a function y as follows. Fix t ∈ (0,∞) and let m ∈ N with
s ≤ nm. Define y(t) = zm(t), then y ∈ C([0,∞),R), y(0) = y0 and |y(t)| ≤ R for
t ∈ [0,∞).
Again fix t ∈ [0,∞) and let m ∈ N with s ≤ nm. Then for n ∈ Nm we have

unk
(t) = y0 −

t

Γ(α− 1)

∫ nm

0

(nm − s)α−2f(s, unk
(s),c Dα−1unk

(s))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, unk
(s),c Dα−1unk

(s))ds.

We can use this method for each x ∈ [0, nm], and for each m ∈ N. Thus

cDαy(t) = f(t, y(t),c Dα−1y(t)), for t ∈ [0, nm]

for each m ∈ N and α ∈ (1, 2] and the constructed function y is a solution of
(1.1)-(1.2). This completes the proof of the theorem. �

4. An Example

In this section, we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional boundary value problem,

cDαy(t) = (et+1)

(
2 + |y(t)|+ |cDα−1y(t)|
1 + |y(t)|+ |cDα−1y(t)|

)
, t ∈ J := [0,∞), 1 < α ≤ 2, (4.1)

y(0) = 1, (4.2)

where

f(t, u, v) =
(
et + 1

)(2 + |u|+ |v|
1 + |u|+ |v|

)
.

It is clear that condition (H) is satisfied with

a(t) = b(t) = et + 1, c(t) = 2(et + 1).

It follows from Theorem 3 that the problem (4.1)–(4.2) has a bounded solution
on [0,∞) for each value of α ∈ (1, 2].
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5. Conclusion

Using Schauder’s fixed point theorem combined with the diagonalization pro-
cess, we have considered the existence of bounded solutions for a class of initial
value problem on the half-line for fractional differential equations involving Caputo
fractional derivative with a nonlinear term depending on the derivative. Many prop-
erties of solutions for differential equations, such as stability or oscillation, require
global properties of solutions. This is the main motivation to look for sufficient
conditions that ensure global existence of solutions for IVP (1.1)-(1.2)

Acknowledgement. The authors are grateful to the referees for their remarks.
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