NEW INEQUALITIES USING FRACTIONAL Q-INTEGRALS THEORY

(COMMUNICATED BY R.K. RAINA)

ZOUBIR DAHMANI, ABDELKADER BENZIDANE

Abstract

The aim of the present paper is to establish some new fractional q-integral inequalities on the specific time scale: $T_{t_{0}}=\left\{t: t=t_{0} q^{n}, n \in\right.$ $N\} \cup\{0\}$, where $t_{0} \in R$, and $0<q<1$.

1. Introduction

The integral inequalities play a fundamental role in the theory of differential equations. Significant development in this area has been achieved for the last two decades. For details, we refer to $[12,13,16,22,18,19]$ and the references therein. Moreover, the study of the the fractional q-integral inequalities is also of great importance. We refer the reader to $[3,15]$ for further information and applications. Now we shall introduce some important results that have motivated our work. We begin by [14], where Ngo et al. proved that for any positive continuous function f on $[0,1]$ satisfying

$$
\int_{x}^{1} f(\tau) d \tau \geq \int_{x}^{1} \tau d \tau, x \in[0,1]
$$

and for $\delta>0$, the inequalities

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) d \tau \geq \int_{0}^{1} \tau^{\delta} f(\tau) d \tau \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f^{\delta+1}(\tau) d \tau \geq \int_{0}^{1} \tau f^{\delta}(\tau) d \tau \tag{1.2}
\end{equation*}
$$

hold.
Then [10], W.J. Liu, G.S. Cheng and C.C. Li established the following result:

$$
\begin{equation*}
\int_{a}^{b} f^{\alpha+\beta}(\tau) d \tau \geq \int_{a}^{b}(\tau-a)^{\alpha} f^{\beta}(\tau) d \tau \tag{1.3}
\end{equation*}
$$

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
Key words and phrases. Fractional q-calculus, q-Integral inequalities.
(c)2012 Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted November 24, 2011. Published February 20, 2012.
where $\alpha>0, \beta>0$ and f is a positive continuous function on $[a, b]$ such that

$$
\int_{x}^{b} f^{\gamma}(\tau) d \tau \geq \int_{x}^{b}(\tau-a)^{\gamma} d \tau ; \gamma:=\min (1, \beta), x \in[a, b]
$$

Recently, Liu et al. [11] proved that for any positive, continuous and decreasing function f on $[a, b]$, the inequality

$$
\begin{equation*}
\frac{\int_{a}^{b} f^{\beta}(\tau) d \tau}{\int_{a}^{b} f^{\gamma}(\tau) d \tau} \geq \frac{\int_{a}^{b}(\tau-a)^{\delta} f^{\beta}(\tau) d \tau}{\int_{a}^{b}(\tau-a)^{\delta} f^{\gamma}(\tau) d \tau}, \beta \geq \gamma>0, \delta>0 \tag{1.4}
\end{equation*}
$$

is valid.

This result was generalized to the following [11]:
Theorem 1.1. Let $f \geq 0, g \geq 0$ be two continuous functions on $[a, b]$, such that f is decreasing and g is increasing. Then for all $\beta \geq \gamma>0, \delta>0$,

$$
\begin{equation*}
\frac{\int_{a}^{b} f^{\beta}(\tau) d \tau}{\int_{a}^{b} f^{\gamma}(\tau) d \tau} \geq \frac{\int_{a}^{b} g^{\delta}(\tau) f^{\beta}(\tau) d \tau}{\int_{a}^{b} g^{\delta}(\tau) f^{\gamma}(\tau) d \tau} \tag{1.5}
\end{equation*}
$$

The same authors established the following result:
Theorem 1.2. Let $f \geq 0$ and $g \geq 0$ be two continuous functions on $[a, b]$ satisfying

$$
\left(f^{\delta}(\tau) g^{\delta}(\rho)-f^{\delta}(\rho) g^{\delta}(\tau)\right)\left(f^{\beta-\gamma}(\tau)-f^{\beta-\gamma}(\rho)\right) \geq 0 ; \tau, \rho \in[a, b]
$$

Then, for all $\beta \geq \gamma>0, \delta>0$ we have

$$
\begin{equation*}
\frac{\int_{a}^{b} f^{\delta+\beta}(\tau) d \tau}{\int_{a}^{b} f^{\delta+\gamma}(\tau) d \tau} \geq \frac{\int_{a}^{b} g^{\delta}(\tau) f^{\beta}(\tau) d \tau}{\int_{a}^{b} g^{\delta}(\tau) f^{\gamma}(\tau) d \tau} \tag{1.6}
\end{equation*}
$$

More recently, using fractional integration theory, Z. Dahmani et al. [6, 7] established some new generalizations for [11].
Many researchers have given considerable attention to (1),(3) and (4) and a number of extensions and generalizations appeared in the literature (e.g. [4, 5, 6, 7, 9, 10]). The purpose of this paper is to derive some new inequalities on the specific time scales $T_{t_{0}}=\left\{t: t=t_{0} q^{n}, n \in N\right\} \cup\{0\}$, where $t_{0} \in R$, and $0<q<1$. Our results, given in section 3 , have some relationships with those obtained in [11] and mentioned above.

2. Notations and Preliminaries

In this section, we provide a summary of the mathematical notations and definitions used in this paper. For more details, one can consult [1, 2].
Let $t_{0} \in R$. We define

$$
\begin{equation*}
T_{t_{0}}:=\left\{t: t=t_{0} q^{n}, n \in N\right\} \cup\{0\}, 0<q<1 \tag{2.1}
\end{equation*}
$$

For a function $f: T_{t_{0}} \rightarrow R$, the ∇ q-derivative of f is:

$$
\begin{equation*}
\nabla_{q} f(t)=\frac{f(q t)-f(t)}{(q-1) t} \tag{2.2}
\end{equation*}
$$

for all $t \in T \backslash\{0\}$ and its ∇q-integral is defined by:

$$
\begin{equation*}
\int_{0}^{t} f(\tau) \nabla \tau=(1-q) t \sum_{i=0}^{\infty} q^{i} f\left(t q^{i}\right) \tag{2.3}
\end{equation*}
$$

The fundamental theorem of calculus applies to the q-derivative and q-integral. In particular, we have:

$$
\begin{equation*}
\nabla_{q} \int_{0}^{t} f(\tau) \nabla \tau=f(t) \tag{2.4}
\end{equation*}
$$

If f is continuous at 0 , then

$$
\begin{equation*}
\int_{0}^{t} \nabla_{q} f(\tau) \nabla \tau=f(t)-f(0) \tag{2.5}
\end{equation*}
$$

Let $T_{t_{1}}, T_{t_{2}}$ denote two time scales and let $f: T_{t_{1}} \rightarrow R$ be continuous, and $g: T_{t_{1}} \rightarrow$ $T_{t_{2}}$ be q-differentiable, strictly increasing such that $g(0)=0$. Then for $b \in T_{t_{1}}$, we have:

$$
\begin{equation*}
\int_{0}^{b} f(t) \nabla_{q} g(t) \nabla t=\int_{0}^{g(b)}\left(f \circ g^{-1}\right)(s) \nabla s \tag{2.6}
\end{equation*}
$$

The q-factorial function is defined as follows:
If n is a positive integer, then

$$
\begin{equation*}
(t-s) \underline{(n)}=(t-s)(t-q s)\left(t-q^{2} s\right) \ldots\left(t-q^{n-1} s\right) \tag{2.7}
\end{equation*}
$$

If n is not a positive integer, then

$$
\begin{equation*}
(t-s) \frac{(n)}{}=t^{n} \prod_{k=0}^{\infty} \frac{1-\left(\frac{s}{t}\right) q^{k}}{1-\left(\frac{s}{t}\right) q^{n+k}} \tag{2.8}
\end{equation*}
$$

The q-derivative of the q-factorial function with respect to t is

$$
\begin{equation*}
\nabla_{q}(t-s) \frac{(n)}{}=\frac{1-q^{n}}{1-q}(t-s) \underline{(n-1)} \tag{2.9}
\end{equation*}
$$

and the q-derivative of the q-factorial function with respect to s is

$$
\begin{equation*}
\nabla_{q}(t-s) \underline{(n)}=-\frac{1-q^{n}}{1-q}(t-q s) \underline{(n-1)} . \tag{2.10}
\end{equation*}
$$

The q-exponential function is defined as

$$
\begin{equation*}
e_{q}(t)=\prod_{k=0}^{\infty}\left(1-q^{k} t\right), e_{q}(0)=1 \tag{2.11}
\end{equation*}
$$

The fractional q-integral operator of order $\alpha \geq 0$, for a function f is defined as

$$
\begin{equation*}
\nabla_{q}^{-\alpha} f(t)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{t}(t-q \tau) \frac{\alpha-1}{} f(\tau) \nabla \tau ; \quad \alpha>0, t>0 \tag{2.12}
\end{equation*}
$$

where $\Gamma_{q}(\alpha):=\frac{1}{1-q} \int_{0}^{1}\left(\frac{u}{1-q}\right)^{\alpha-1} e_{q}(q u) \nabla u$.

3. Main Results

In this section, we state our results and we give their proofs.
Theorem 3.1. Suppose that f is a positive, continuous and decreasing function on $T_{t_{0}}$. Then for all $\alpha>0, \beta \geq \gamma>0, \delta>0$, we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}\left[f^{\beta}(t)\right]}{\nabla_{q}^{-\alpha}\left[f^{\gamma}(t)\right]} \geq \frac{\nabla_{q}^{-\alpha}\left[t^{\delta} f^{\beta}(t)\right]}{\nabla_{q}^{-\alpha}\left[t^{\delta} f^{\gamma}(t)\right]}, t>0 \tag{3.1}
\end{equation*}
$$

Proof. For any $t \in T_{t_{0}}$ then for all $\beta \geq \gamma>0, \delta>0, \tau, \rho \in(0, t)$, we have

$$
\begin{equation*}
\left(\rho^{\delta}-\tau^{\delta}\right)\left(f^{\beta-\gamma}(\tau)-f^{\beta-\gamma}(\rho)\right) \geq 0 \tag{3.2}
\end{equation*}
$$

Let us consider

$$
\begin{equation*}
H(\tau, \rho):=f^{\gamma}(\tau) f^{\gamma}(\rho)\left(\rho^{\delta}-\tau^{\delta}\right)\left(f^{\beta-\gamma}(\tau)-f^{\beta-\gamma}(\rho)\right) \tag{3.3}
\end{equation*}
$$

Hence, we can write

$$
\begin{align*}
2^{-1} \int_{0}^{t} \int_{0}^{t} \frac{(t-q \tau) \underline{(\alpha-1)}}{\Gamma_{q}(\alpha)} & \frac{(t-q \rho) \underline{(\alpha-1)}}{\Gamma_{q}(\alpha)} H(\tau, \rho) \nabla \tau \nabla \rho=\nabla_{q}^{-\alpha}\left[f^{\beta}(t)\right] \nabla_{q}^{-\alpha}\left[t^{\delta} f^{\gamma}(t)\right] \\
& -\nabla_{q}^{-\alpha}\left[f^{\gamma}(t)\right] \nabla_{q}^{-\alpha}\left[t^{\delta} f^{\beta}(t)\right] \geq 0 \tag{3.4}
\end{align*}
$$

The proof of Theorem 3.1 is complete.
We have also the following result:
Theorem 3.2. Let f, g and h be positive and continuous functions on $T_{t_{0}}$, such that

$$
\begin{equation*}
(g(\tau)-g(\rho))\left(\frac{f(\rho)}{h(\rho)}-\frac{f(\tau)}{h(\tau)}\right) \geq 0 ; \tau, \rho \in(0, t), t>0 \tag{3.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t))}{\nabla_{q}^{-\alpha}(h(t))} \geq \frac{\nabla_{q}^{-\alpha}(g f(t))}{\nabla_{q}^{-\alpha}(g h(t))} \tag{3.6}
\end{equation*}
$$

for any $\alpha>0, t>0$.
Proof. Let f, g and h be three positive and continuous functions on $T_{t_{0}}$. By (3.5), we can write

$$
\begin{equation*}
g(\tau) \frac{f(\rho)}{h(\rho)}+g(\rho) \frac{f(\tau)}{h(\tau)}-g(\rho) \frac{f(\rho)}{h(\rho)}-g(\tau) \frac{f(\tau)}{h(\tau)} \geq 0 \tag{3.7}
\end{equation*}
$$

where $\tau, \rho \in(0, t), t>0$.
Therefore,

$$
\begin{equation*}
g(\tau) f(\rho) h(\tau)+g(\rho) f(\tau) h(\rho)-g(\rho) f(\rho) h(\tau)-g(\tau) f(\tau) h(\rho) \geq 0, \tau, \rho \in(0, t), t>0 \tag{3.8}
\end{equation*}
$$

Multiplying both sides of (3.8) by $\frac{(t-q \tau)(\alpha-1)}{\Gamma_{q}(\alpha)}$, then integrating the resulting inequality with respect to τ over $(0, t)$, yields

$$
\begin{equation*}
f(\rho) \nabla_{q}^{-\alpha} g h(t)+g(\rho) h(\rho) \nabla_{q}^{-\alpha} f(t)-g(\rho) f(\rho) \nabla_{q}^{-\alpha} h(t)-h(\rho) \nabla_{q}^{-\alpha} g f(t) \geq 0 \tag{3.9}
\end{equation*}
$$

and so,

$$
\begin{equation*}
\nabla_{q}^{-\alpha} f(t) \nabla_{q}^{-\alpha} g h(t)-\nabla_{q}^{-\alpha} h(t) \nabla_{q}^{-\alpha} g f(t) \geq 0 \tag{3.10}
\end{equation*}
$$

This ends the proof of Theorem 3.2.
Using two fractional parameters, we have a more general result:
Theorem 3.3. Let f, g and h be be positive and continuous functions on $T_{t_{0}}$, such that

$$
\begin{equation*}
(g(\tau)-g(\rho))\left(\frac{f(\rho)}{h(\rho)}-\frac{f(\tau)}{h(\tau)}\right) \geq 0 ; \tau, \rho \in(0, t), t>0 \tag{3.11}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t)) \nabla_{q}^{-\omega}(g h(t))+\nabla_{q}^{-\omega}(f(t)) \nabla_{q}^{-\alpha}(g h(t))}{\nabla_{q}^{-\alpha}(h(t)) \nabla_{q}^{-\omega}(g f(t))+\nabla_{q}^{-\omega}(h(t)) \nabla_{q}^{-\alpha}(g f(t))} \geq 1 \tag{3.12}
\end{equation*}
$$

holds, for all $\alpha>0, \omega, t>0$.
Proof. As before, from (3.9), we can write

$$
\begin{align*}
& \frac{(t-q \rho) \frac{\omega-1}{\Gamma_{q}(\omega)}}{(\omega)}\left(f(\rho) \nabla_{q}^{-\alpha} g h(t)+g(\rho) h(\rho) \nabla_{q}^{-\alpha} f(t)\right. \tag{3.13}\\
& \left.\quad-g(\rho) f(\rho) \nabla_{q}^{-\alpha} h(t)-h(\rho) \nabla_{q}^{-\alpha} g f(t)\right) \geq 0
\end{align*}
$$

which implies that

$$
\begin{align*}
& \nabla_{q}^{-\omega}(f(t)) \nabla_{q}^{-\alpha}(g h(t))+\nabla_{q}^{-\alpha}(f(t)) \nabla_{q}^{-\omega}(g h(t)) \tag{3.14}\\
\geq & \nabla_{q}^{-\alpha}(h(t)) \nabla_{q}^{-\omega}(g f(t))+\nabla_{q}^{-\omega}(h(t)) \nabla_{q}^{-\alpha}(g f(t))
\end{align*}
$$

Theorem 3.3 is thus proved.

Remark 3.4. It is clear that Theorem 3.2 would follow as a special case of Theorem 3.3 for $\alpha=\omega$.

We further have
Theorem 3.5. Suppose that f and h are two positive continuous functions such that $f \leq h$ on $T_{t_{0}}$. If $\frac{f}{h}$ is decreasing and f is increasing on $T_{t_{0}}$, then for any $p \geq 1, \alpha>0, t>0$, the inequality

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t))}{\nabla_{q}^{-\alpha}(h(t))} \geq \frac{\nabla_{q}^{-\alpha}\left(f^{p}(t)\right)}{\nabla_{q}^{-\alpha}\left(h^{p}(t)\right)} \tag{3.15}
\end{equation*}
$$

holds.
Proof. Thanks to Theorem 3.2, we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t))}{\nabla_{q}^{-\alpha}(h(t))} \geq \frac{\nabla_{q}^{-\alpha}\left(f f^{p-1}(t)\right)}{\nabla_{q}^{-\alpha}\left(h f^{p-1}(t)\right)} \tag{3.16}
\end{equation*}
$$

The hypothesis $f \leq h$ on $T_{t_{0}}$ implies that

$$
\begin{equation*}
\frac{(t-q \tau) \frac{\alpha-1}{}}{\Gamma_{q}(\alpha)} h f^{p-1}(\tau) \leq \frac{(t-q \tau)^{\alpha-1}}{\Gamma_{q}(\alpha)} h^{p}(\tau), \tau \in(0, t), t>0 \tag{3.17}
\end{equation*}
$$

Then by integration over $(0, t)$, we get

$$
\begin{equation*}
\nabla_{q}^{-\alpha}\left(h f^{p-1}(t)\right) \leq \nabla_{q}^{-\alpha}\left(h^{p}(t)\right) \tag{3.18}
\end{equation*}
$$

and so,

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}\left(f f^{p-1}(t)\right)}{\nabla_{q}^{-\alpha}\left(h f^{p-1}(t)\right)} \geq \frac{\nabla_{q}^{-\alpha}\left(f^{p}(t)\right)}{\nabla_{q}^{-\alpha}\left(h^{p}(t)\right)} \tag{3.19}
\end{equation*}
$$

Then thanks to (3.16) and (3.19), we obtain (3.15).
Another result is given by the following theorem:
Theorem 3.6. Suppose that f and h are two positive continuous functions such that $f \leq h$ on $T_{t_{0}}$. If $\frac{f}{h}$ is decreasing and f is increasing on $T_{t_{0}}$, then for any $p \geq 1, \alpha>0, \omega>0, t>0$, we have

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t)) \nabla_{q}^{-\omega}\left(h^{p}(t)\right)+\nabla_{q}^{-\omega}(f(t)) \nabla_{q}^{-\alpha}\left(h^{p}(t)\right)}{\nabla_{q}^{-\alpha}(h(t)) \nabla_{q}^{-\omega}\left(f^{p}(t)\right)+\nabla_{q}^{-\omega}(h(t)) \nabla_{q}^{-\alpha}\left(f^{p}(t)\right)} \geq 1 \tag{3.20}
\end{equation*}
$$

Proof. We take $g:=f^{p-1}$ in Theorem 3.5. Then we obtain

$$
\begin{equation*}
\frac{\nabla_{q}^{-\alpha}(f(t)) \nabla_{q}^{-\omega}\left(h f^{p-1}(t)\right)+\nabla_{q}^{-\omega}(f(t)) \nabla_{q}^{-\alpha}\left(h f^{p-1}(t)\right)}{\nabla_{q}^{-\alpha}(h(t)) \nabla_{q}^{-\omega}\left(f^{p}(t)\right)+\nabla_{q}^{-\omega}(h(t)) \nabla_{q}^{-\alpha}\left(f^{p}(t)\right)} \geq 1 \tag{3.21}
\end{equation*}
$$

The hypothesis $f \leq h$ on $T_{t_{0}}$ implies that

$$
\begin{equation*}
\frac{(t-q \rho) \frac{\omega-1}{-}}{\Gamma_{q}(\omega)} h f^{p-1}(\rho) \leq \frac{(t-q \rho) \frac{\omega-1}{-}}{\Gamma_{q}(\omega)} h^{p}(\rho), \rho \in(0, t), t>0 . \tag{3.22}
\end{equation*}
$$

Integrating both sides of (3.22) with respect to ρ over $(0, t)$, we obtain

$$
\begin{equation*}
\nabla_{q}^{-\omega}\left(h f^{p-1}(t)\right) \leq \nabla_{q}^{-\omega}\left(h^{p}(t)\right) \tag{3.23}
\end{equation*}
$$

Hence by (3.18) and (3.23), we have

$$
\begin{align*}
& \nabla_{q}^{-\alpha} f(t) \nabla_{q}^{-\omega}\left(h f^{p-1}(t)\right)+\nabla_{q}^{-\omega} f(t) \nabla_{q}^{-\alpha}\left(h f^{p-1}(t)\right) \tag{3.24}\\
& \quad \leq \nabla_{q}^{-\alpha} f(t) \nabla_{q}^{-\omega}\left(h^{p}(t)\right)+\nabla_{q}^{-\omega} f(t) \nabla_{q}^{-\alpha}\left(h^{p}(t)\right)
\end{align*}
$$

By (3.21) and (3.24), we complete the proof of this theorem.

Remark 3.7. Applying Theorem 3.6, for $\alpha=\omega$, we obtain Theorem 3.5.

References

[1] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proceedings of the Cambridge Philosophical Society, 66 (1969), 365-370.
[2] F.M. Atici and P. W. Eloe, Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics, 14 (3) (2007), 341-352.
[3] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser, Boston, Mass, USA, (2001).
[4] L. Bougoufa, An integral inequality similar to Qi inequality, JIPAM. J. Inequal. Pure Appl. Math., 6 (1) (2005), Art. 27.
[5] K. Boukerrioua, A. Guezane Lakoud, On an open question regarding an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 8 (3) (2007), Art. 77.
[6] Z. Dahmani, N. Bedjaoui, Some generalized integral inequalities, To appear in J. Adv. Res. Appl. Math., (2011).
[7] Z. Dahmani, H. Metakkel El Ard, Generalizations of some integral inequalities using RiemannLiouville operator, Int. J. Open Problems Compt. Math., 4(4) (2011), 41-46.
[8] Z. Dahmani, l. Tabharit, Certain inequalities involving fractional integrals, J. Advanc. Resea. in Sci. Comput., 2(1) (2010), 55-60.
[9] W.J. Liu, C.C. Li and J.W. Dong, On an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 83 (2007), Art. 74.
[10] W.J. Liu, G.S. Cheng and C.C. Li, Further development of an open problem concerning an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 9 (1) (2008), Art. 14.
[11] W.J. Liu, Q.A. Ngo and V.N. Huy, Several interesting integral inequalities, Journal of Math. Inequal., 3 (2) (2009), 201-212.
[12] S. Mazouzi and F. Qi, On an open problem regarding an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 4 (2) (2003), Art. 31.
[13] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and new inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[14] Q.A. Ngo, D.D. Thang, T.T. Dat, and D.A. Tuan, Notes on an integral inequality, JIPAM. J. Inequal. Pure Appl. Math., 7 (4) (2006), Art. 120.
[15] H. Ogunmez and U.M. Ozkan, Fractional Quantum Integral Inequalities, JIA, Journal of Inequalities and Applications, 2011, Art. ID 787939, 7 pp.
[16] B. G. Pachpatte, Mathematical inequalities, North Holland Mathematical Library, 67 (2005).
[17] J. Pecaric and T. Pejkovic, Note on Feng Qi's inequality, JIPAM. J. Inequal. Pure Appl. Math., 5 (3) (2004), Art. 51.
[18] T.K. Pogany, On an open problem of F. Qi, JIPAM. J. Inequal. Pure Appl. Math., 3 (4) (2002), Art. 54.
[19] F. Qi, Several integral inequalities, JIPAM. J. Inequal. Pure Appl. Math., 1 (2)(2000), Art. 19.
[20] E. Set, M.E. Ozdemir and S.S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., (2010), Art. ID 148102, 9 pp.
[21] H. Ogunmez and U.M. Ozkan, Fractional Quantum Integral Inequalities, J. Inequal. Appl., (2011), Art. ID 787939, 7 pp.
[22] J. Pecaric and T. Pejkovic, Note on Feng Qi's inequality, J. Inequal. Pure Appl. Math., 5 (3) (2004), Art. 51.
[23] H. Young, A note on Feng Qi type integral inequalities, Int. Journal of Math. Analysis, 1 (25) (2007), 1243-1247.
Z. Dahmani
laboratory of Pure and Applied Mathematics, LPAM, Faculty SEI, UMAB, University of Mostaganem

E-mail address: zzdahmani@yahoo.fr
A. Benzidane

Department of Mathematics, Faculty of Exact Sciences, UMAB University of Mostaganem

E-mail address: aekm27@yahoo.fr

