ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS ON HILBERT SPACE

(COMMUNICATED BY SALAH MECHERI)

OULD AHMED MAHMOUD SID AHMED

Abstract

Let T be a bounded linear operator on a complex Hilbert space H. In this paper we investigate some, properties of the class of n-power quasinormal operators, denoted $[n Q N]$, satisfying $T^{n}|T|^{2}-|T|^{2} T^{n}=0$ and some relations between n-normal operators and n-quasinormal operators.

1. INTRODUCTION AND TERMINOLOGIES

A bounded linear operator on a complex Hilbert space, is quasi-normal if T and $T^{*} T$ commute. The class of quasi-normal operators was first introduced and studied by A.Brown [5] in 1953. From the definition, it is easily seen that this class contains normal operators and isometries. In [9] the author introduce the class of n-power normal operators as a generalization of the class of normal operators and study sum properties of such class for different values of the parameter n. In particular for $n=2$ and $n=3$ (see for instance $[9,10]$). In this paper, we study the bounded linear transformations T of complex Hilbert space H that satisfy an identity of the form

$$
\begin{equation*}
T^{n} T^{*} T=T^{*} T T^{n} \tag{1.1}
\end{equation*}
$$

for some integer n. Operators T satisfying (1.1) are said to be n-power quasinormal.

Let $\mathcal{L}(H)=\mathcal{L}(H, H)$ be the Banach algebra of all bounded linear operators on a complex Hilbert space H. For $T \in \mathcal{L}(H)$, we use symbols $R(T), N(T)$ and T^{*} the range, the kernel and the adjoint of T respectively,

Let $W(T)=\{\langle T x \mid x\rangle: x \in H,\|x\|=1\}$ the numerical range of T. A subspace $M \subset H$ is said to be invariant for an operator $T \in \mathcal{L}(H)$ if $T M \subset M$, and in this situation we denote by $T \mid M$ the restriction of T to M. Let $\sigma(T), \sigma_{a}(T)$ and $\sigma_{p}(T)$, respectively denote the spectrum, the approximate point spectrum and point spectrum of the operator T.

[^0]For any arbitrary operator $T \in \mathcal{L}(H),|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ and

$$
\left[T^{*}, T\right]=T^{*} T-T T^{*}=|T|^{2}-\left|T^{*}\right|^{2}
$$

(the self-commutator of T).
An operator T is normal if $T^{*} T=T T^{*}$, positive-normal (posinormal) il there exits a positive operator $P \in \mathcal{L}(H)$ such that $T T^{*}=T^{*} P T$, hyponormal if $\left[T^{*}, T\right]$ is nonnegative(i.e. $\left|T^{*}\right|^{2} \leq|T|^{2}$, equivalently $\left\|T^{*} x\right\| \leq\|T x\|, \forall x \in H$), quasihyponormal if $T^{*}\left[T^{*}, T\right] T$ is nonnegative, paranormal if $\|T x\|^{2} \leq\left\|T^{2} x\right\|$ for all $x \in H, n$-isometry if

$$
T^{* n} T^{n}-\binom{n}{1} T^{* n-1} T^{n-1}+\binom{n}{2} T^{* n-2} T^{n-2} \ldots+(-1)^{n} I=0
$$

m-hyponormal if there exists a positive number m, such that

$$
m^{2}(T-\lambda I)^{*}(T-\lambda I)-(T-\lambda I)(T-\lambda I)^{*} \leq 0 ; \text { for all } \lambda \in \mathbb{C}
$$

Let $[N] ;[Q N] ;[H]$; and $(m-H)$ denote the classes constituting of normal, quasinormal, hyponormal, and m-hyponormal operators. Then

$$
[N] \subset[Q N] \subset[H] \subset[m-H]
$$

For more details see $[1,2,3,11,14,15]$.
Definition 1.1. ([7]) An operator $T \in \mathcal{L}(H)$ is called (α, β)-normal $(0 \leq \alpha \leq 1 \leq$ β) if

$$
\alpha^{2} T^{*} T \leq T T^{*} \leq \beta^{2} T^{*} T
$$

or equivalently

$$
\alpha\|T x\| \leq\left\|T^{*} x\right\| \leq \beta\|T x\| \text { for all } x \in H
$$

Definition 1.2. ([9]) Let $T \in \mathcal{L}(H)$. T is said n-power normal operator for a positive integer n if

$$
T^{n} T^{*}=T^{*} T^{n}
$$

The class of all n-normal operators is denoted by $[n N]$.
Proposition 1.3. ([9]) Let $T \in \mathcal{L}(H)$, then T is of class $[n N]$ if and only if T^{n} is normal for any positif integer n.

Remark. T is n-power normal if and only if T^{n} is (1,1)-normal.
The outline of the paper is as follows: Introduction and terminologies are described in first section. In the second section we introduce the class of n-power quasi-normal operators in Hilbert spaces and we develop some basic properties of this class. In section three we investigate some properties of a class of operators denoted by $\left(\mathbb{Z}^{n}\right)$ contained the class $[n Q N$.

2. BASIC PROPERTIES OF THE CLASS $[n Q N]$

In this section, we will study some property which are applied for the n-power quasi-normal operators.
Definition 2.1. For $n \in \mathbb{N}$, an operator $T \in \mathcal{L}(H)$ is said to be n-power quasinormal operator if

$$
T^{n} T^{*} T=T^{*} T^{n+1}
$$

ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS ON HILBERT SPACE 215
We denote the set of n-power quasi-normal operators by $[n Q N]$. It is obvious that the class of all n-power quasi-normal operators properly contained classes of n-normal operators and quasi-normal operators, i.e., the following inclusions holds

$$
[n N] \subset[n Q N] \quad \text { and } \quad[Q N] \subset[n Q N]
$$

Remark.

(1) A 1-power quasi-normal operator is quasi-normal.
(2) Every quasi-normal operator is n-power quasi-normal for each n.
(3) It is clear that a n-power normal operator is also n-power quasi-normal. That the converse need not hold can be seen by choosing T to be the unilateral shift, that is, if $H=l^{2}$, the matrix $T=\left(\begin{array}{cccc}0 & 0 & 0 & \ldots \\ 1 & 0 & 0 & \ldots \\ 0 & 1 & 0 & \ldots \\ \ldots & \ldots & \ldots & \ldots\end{array}\right)$. It is easily verified that $T^{2} T^{*}-T^{*} T^{2} \neq 0$ and $\left(T^{2} T^{*}-T^{*} T^{2}\right) T=0$. So that T is not 2-power normal but is a 2-power quasi-normal.

Remark. An operator T is n-power quasi-normal if and only if

$$
\left[T^{n}, T^{*} T\right]=\left[T^{n}, T^{*}\right] T=0
$$

Remark. An operator T is n-power quasi-normal if and only if

$$
T^{n}|T|^{2}=|T|^{2} T^{n}
$$

First we record some elementary properties of $[n N Q]$
Theorem 2.2. If $T \in[n Q N]$, then
(1) T is of class $[2 n Q N]$.
(2) if T has a dense range in H, T is of class $[n N]$. In particular, if T is invertible, then T^{-1} is of class $[n Q N]$.
(3) If T and S are of class $[n Q N]$ such that $[T, S]=\left[T, S^{*}\right]=0$, then $T S$ is of class $[n Q N]$.
(4) If S and T are of class $[n Q N]$ such that $S T=T S=T^{*} S=S T^{*}=0$, , then $S+T$ is of class $[n Q N]$.

Proof.

(1) Since T is of $[n Q N]$, then

$$
\begin{equation*}
T^{n} T^{*} T=T^{*} T T^{n} \tag{2.1}
\end{equation*}
$$

Multiplying (2.1) to the left by T^{n}, we obtain

$$
T^{2 n} T^{*} T=T^{*} T T^{2 n}
$$

Thus T is of class [$2 n Q N]$.
(2) Since T is of class $[n Q N]$, we have for $y \in R(T): y=T x, x \in H$, and $\left\|\left(T^{n} T^{*}-T^{*} T^{n}\right) y\right\|=\left\|\left(T^{n} T^{*}-T^{*} T^{n}\right) T x\right\|=\left\|\left(T^{n} T^{*} T-T^{*} T^{n+1}\right) x\right\|=0$.

Thus, T is n-power normal on $R(T)$ and hence T is of class $[n N]$. In case T invertible, then it is an invertible operator of class $[n N]$ and so

$$
T^{n} T^{*}=T^{*} T^{n}
$$

This in turn shows that

$$
T^{-n}\left(T^{*-1} T^{-1}\right)=\left[\left(T T^{*}\right) T^{n}\right]^{-1}=\left[T^{n+1} T^{*}\right]^{-1}=\left[T^{*-1} T^{-1}\right] T^{-n}
$$

which prove the result.
(3)

$$
\begin{aligned}
(T S)^{n}(T S)^{*} T S & =T^{n} S^{n} T^{*} S^{*} T S=T^{n} T^{*} T S^{n} S^{*} S \\
& =T^{*} T^{n+1} S^{*} S^{n+1}=(T S)^{*}(T S)^{n+1}
\end{aligned}
$$

Hence, $T S$ is of class $[n Q N]$.

$$
\begin{align*}
(T+S)^{n}(T+S)^{*}(T+S) & =\left(T^{n}+S^{n}\right)\left(T^{*} T+S^{*} S\right) \tag{4}\\
& =T^{n} T^{*} T+S^{n} S^{*} S \\
& =T^{*} T^{n+1}+S^{*} S^{n+1} \\
& =(T+S)^{*}(T+S)^{n+1}
\end{align*}
$$

Which implies that $T+S$ is of class $[n Q N]$.
Proposition 2.3. If T is of class $[n Q N]$ such that T is a partial isometry, then T is of class $[(n+1) Q N]$.

Proof. Since T is a partial isometry, therefore

$$
\begin{equation*}
\left.T T^{*} T=T[4], p .153\right) \tag{2.2}
\end{equation*}
$$

Multiplying (2.2) to the left by $T^{*} T^{n+1}$ and using the fact that T is of class $[n N Q]$, we get

$$
\begin{aligned}
T^{*} T^{n+2} & =T^{*} T^{n+2} T^{*} T \\
& =T^{n} T^{*} T \cdot T T^{*} T \\
& =T^{n+1} T^{*} T
\end{aligned}
$$

which implies that T is of class $[(n+1) Q N]$.
The following examples show that the two classes $[2 N Q]$ and $[3 N Q]$ are not the same.
Example 2.4. Let $H=\mathbb{C}^{3}$ and let $T=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right) \in \mathcal{L}\left(\mathbb{C}^{3}\right)$. Then by simple calculations we see that T is not of class $[3 Q N]$ but of class $[2 Q N]$.
Example 2.5. Let $H=\mathbb{C}^{3}$ and let $S=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1\end{array}\right) \in \mathcal{L}\left(\mathbb{C}^{3}\right)$. Then by simple calculations we see that S is not of class [2QN] but of class $[3 Q N]$.
Proposition 2.6. Let $T \in \mathcal{L}(H)$ such that T is of class $[2 Q N] \bigcap[3 Q N]$, then T is of class $[n Q N]$ for all positive integer $n \geq 4$.

Proof. We proof the assertion by using the mathematical induction. For $n=4$ it is a consequence of Theorem 2.2. 1 .
We prove this for $n=5$. Since $T \in[2 Q N]$,

$$
\begin{equation*}
T^{2} T^{*} T=T^{*} T^{3} \tag{2.3}
\end{equation*}
$$

multiplying (2.3) to the left by T^{3} we get

$$
T^{5} T^{*} T=T^{3} T^{*} T^{3}
$$

Thus we have

$$
\begin{aligned}
T^{5} T^{*} T & =T^{3} T^{*} T^{3} \\
& =T^{*} T^{4} T^{2} \\
& =T^{*} T^{6}
\end{aligned}
$$

Now assume that the result is true for $n \geq 5$ i.e

$$
T^{n} T^{*} T=T^{*} T T^{n}
$$

then

$$
\begin{aligned}
T^{n+1} T^{*} T & =T T^{*} T^{n+1} \\
& =T T^{*} T^{3} T^{n-2} \\
& =T^{3} T^{*} T T^{n-2} \\
& =T^{*} T^{4} T^{*(n-2)} \\
& =T^{*} T^{n+2}
\end{aligned}
$$

Thus T is of class $[(n+1) Q N]$.
Proposition 2.7. If T is of class $[n Q N]$ such that $N\left(T^{*}\right) \subset N(T)$, then T is of class $[n N]$.

Proof. In view of the inclusion $N\left(T^{*}\right) \subset N(T)$, it is not difficult to verify the normality of T^{n}.

Next couple of results shows that $[n Q N]$ is not translation invariant
Theorem 2.8. If T and $T-I$ are of class $[2 Q N]$, then T is normal.
Proof. First we see that the condition on $T-I$ implies

$$
T^{2}\left(T^{*} T\right)-T^{2} T^{*}-2 T\left(T^{*} T\right)+2 T T^{*}=\left(T^{*} T\right) T^{2}-T^{*} T^{2}-2\left(T^{*} T\right) T+2 T^{*} T
$$

Since T is of class [2QN], we have

$$
-T^{2} T^{*}-2 T\left(T^{*} T\right)+2 T T^{*}=-T^{*} T^{2}-2\left(T^{*} T\right) T+2 T^{*} T
$$

or

$$
\begin{equation*}
-T T^{* 2}-2\left(T^{*} T\right) T^{*}+2 T T^{*}=-T^{* 2} T-2 T^{*}\left(T^{*} T\right)+2 T^{*} T \tag{2.4}
\end{equation*}
$$

We first show that (2.4) implies

$$
\begin{equation*}
N\left(T^{*}\right) \subset N(T) \tag{2.5}
\end{equation*}
$$

Suppose $T^{*} x=0$. From (2.4), we get

$$
\begin{equation*}
-3 T^{* 2} T x+2 T^{*} T x=0 \tag{2.6}
\end{equation*}
$$

Then

$$
-3 T^{* 3} T x+2 T^{* 2} T x=0
$$

Therefore, as T is of class $[2 Q N]$,

$$
-3 T^{*} T T^{* 2} x+2 T^{* 2} T x=0
$$

and hence

$$
2 T^{* 2} T x=0
$$

Consequently, (2.6) gives $2 T^{*} T x=0$ or $T x=0$.This proves (2.5). As observe in Proposition 2.7 and Proposition $1.3 T^{2}$ is normal. This along with (2.4) gives

$$
-T\left(T^{*} T\right)+T T^{*}=-\left(T^{*} T\right) T+T^{*} T
$$

or

$$
\begin{equation*}
T^{*}\left(T^{*} T-T T^{*}\right)=T^{*} T-T T^{*} \tag{2.7}
\end{equation*}
$$

If $N\left(T^{*}-I\right)=\{0\}$, then (2.7) implies T is normal.
Now assume that $N\left(T^{*}-I\right)$ is non trivial. Let $T^{*} x=x$. Then (2.6) gives

$$
T^{* 2} T x-T^{*} T x=T^{*} T x-T x
$$

Since $T^{* 2} T=T T^{* 2}$, we have

$$
T^{*} T x=T x
$$

Therefore

$$
\|T x\|^{2}=<T^{*} T x|x>=<T x| x>=<x \mid T^{*} x>=\|x\|^{2}
$$

Hence

$$
\begin{aligned}
\|T x-x\|^{2} & =\|T x\|^{2}+\|x\|^{2}-2 R e<T x \mid x> \\
& =\|T x\|^{2}-\|x\|^{2} \\
& =0
\end{aligned}
$$

Or $T x=x$. Thus $N\left(T^{*}-I\right) \subset N(T-I)$.This along with (2.7), yields

$$
T\left(T^{*} T-T T^{*}\right)=T^{*} T-T T^{*}
$$

and so

$$
T\left(T^{*} T-T T^{*}\right) T=\left(T^{*} T-T T^{*}\right) T
$$

or

$$
T T^{*} T^{2}-T^{2} T^{*} T=T^{*} T^{2}-T T^{*} T
$$

Since $T^{2} T^{*}=T^{*} T^{2}$ and $T^{3} T^{*}=T^{*} T^{3}$ we deduce that $T^{*} T^{2}=T T^{*} T$. Thus T is quasinormal. From (2.5), the normality of T follows.
In attempt to extend the above result for operators of class [$n Q N$], we prove
Theorem 2.9. If T is of class $[2 Q N] \cap[3 Q N]$ such that $T-I$ is of class $[n Q N]$, then T is normal.

Proof. Since $T-I$ is of class $[n Q N]$, we have

$$
\sum_{k=1}^{n} a_{k} T^{k} T^{*} T-\sum_{k=1}^{n} a_{k} T^{k} T^{*}=T^{*} T \sum_{k=1}^{n} a_{k} T^{k}-T^{*} \sum_{k=1}^{n} a_{k} T^{k}, a_{k}=(-1)^{n-k}\binom{n}{k}
$$

Under the condition on T, we have by Proposition 2.6

$$
a_{1} T\left(T^{*} T\right)-\left(\sum_{k=1}^{n} a_{k} T^{k}\right) T^{*}=a_{1}\left(T^{*} T\right) T-T^{*}\left(\sum_{k=1}^{n} a_{k} T^{k}\right)
$$

or

$$
\begin{equation*}
a_{1}\left(T^{*} T\right) T^{*}-T\left(\sum_{k=1}^{n} a_{k} T^{* k}\right)=a_{1} T^{*}\left(T^{*} T\right)-\left(\sum_{k=1}^{n} a_{k} T^{* k}\right) T \tag{2.8}
\end{equation*}
$$

(2.8) implies that $N\left(T^{*}\right) \subset N(T)$. In fact, let $T^{*} x=0$. From (2.8), we have

$$
a_{1} T^{* 2} T x-\left(\sum_{k=1}^{n} a_{k} T^{* k}\right) T x=0
$$

T is of class $[2 Q N]$ and of class [3QN], we deduce that

$$
\begin{equation*}
a_{1} T^{* 2} T x-a_{1} T^{*} T x-a_{2} T^{* 2} T x=0 \tag{2.9}
\end{equation*}
$$

and hence

$$
a_{1} T^{* 3} T x-a_{1} T^{* 2} T-a_{2} T^{* 3} T x=0
$$

Hence

$$
a_{1} T^{* 2} T x
$$

Consequently (2.9) gives $T^{*} T x=0$, which implies that $T x=0$.
It follows by Proposition 2.7 that T^{k} is normal for $k=2,3, \ldots, n$ and hence

$$
T\left(T^{*} T\right)-T T^{*}=\left(T^{*} T\right) T-T^{*} T
$$

or

$$
T^{*}\left(T T^{*}-T^{*} T\right)=T T^{*}-T^{*} T
$$

Hence,

$$
\left(T^{*}-I\right)\left(T T^{*}-T^{*} T\right)=0
$$

A similar argument given in as in the proof of Theorem 2.8 gives the desired result.
Theorem 2.10. If T and T^{*} are of class $[n Q N]$, then T^{n} is normal.
First we establish
Lemma 2.11. If T is of class $[n Q N]$, then $N\left(T^{n}\right) \subset N\left(T^{* n}\right)$ for $n \geq 2$.
Proof. Suppose $T^{n} x=0$. Then

$$
T^{* n}\left(T^{*} T\right) T^{n-1} x=0
$$

By hypotheses,

$$
T^{*} T T^{* n} T^{n-1} x=0
$$

which implies

$$
T T^{* n} T^{n-1} x=0
$$

Hence

$$
T^{* n} T^{n-1} x=0
$$

Under the condition on T, we have

$$
T^{*} T T^{* n} T^{n-2} x=0
$$

Hence

$$
T^{* n} T^{n-2} x=0
$$

By repeating this process we can find

$$
T^{* n} x=0
$$

Proof of Theorem 2.10. By hypotheses and Lemma 2.11

$$
N\left(T^{* n}\right)=N\left(T^{n}\right)
$$

Since T is of $[n Q N],\left[T^{n} T^{*}-T^{*} T^{n}\right] T^{n}=0$,i.e. $\left[T^{n} T^{*}-T^{*} T^{n}\right]=0$ on $\operatorname{clR}(T)$. also the fact that $N\left(T^{*}\right)$ is a subset of $N\left(T^{n}\right)$ gives $\left[T^{n} T^{*}-T^{*} T^{n}\right]=0$ on $N\left(T^{*}\right)$. Hence the result follows.

Theorem 2.12. If T and T^{2} are of class [2QN], and T is of class [3QN], then T^{2} is quasinormal.

Proof. The condition that T^{2} is of class $[2 Q N]$ gives

$$
T^{* 4}\left(T^{* 2} T^{2}\right)=\left(T^{* 2} T^{2}\right) T^{* 4}
$$

Implies

$$
T^{* 5}\left(T^{*} T\right) T=\left(T^{* 2} T^{2}\right) T^{* 4}
$$

Since T if of class [3QN], we have

$$
T^{* 2}\left(T^{*} T\right) T^{* 3} T=\left(T^{* 2} T^{2}\right) T^{* 4}
$$

And hence

$$
T^{* 2}\left(T^{*} T\right)^{2} T^{* 2}=\left(T^{* 2} T^{2}\right) T^{* 4} \quad[T \text { is of class } \quad[2 Q N]] .
$$

Implies

$$
\left(T^{*} T\right)^{2} T^{* 4}=\left(T^{* 2} T^{2}\right) T^{* 4} \quad[T \text { is of class }[2 Q N]]
$$

or

$$
T^{4}\left(\left(T^{*} T\right)^{2}-T^{* 2} T^{2}\right)=0
$$

By Lemma 2.11,

$$
T^{* 2} T^{2}\left(\left(T^{*} T\right)^{2}-T^{* 2} T^{2}\right)=0
$$

or

$$
\begin{equation*}
\left.T^{2}\left[\left(T^{*} T\right)^{2}-T^{* 2} T^{2}\right)\right]=0 \tag{2.10}
\end{equation*}
$$

Hence

$$
T^{* 2}\left[\left(\left(T^{*} T\right)^{2}-T^{* 2} T^{2}\right)\right]=0, \quad\left[N\left(T^{2}\right) \text { is a subset of } N\left(T^{* 2}\right)\right]
$$

Or

$$
\begin{equation*}
\left[\left(\left(T^{*} T\right)^{2}-T^{* 2} T^{2}\right)\right] T^{2}=0 \tag{2.11}
\end{equation*}
$$

Since T is of class [2QN], T^{2} commutes with $\left(T^{*} T\right)^{2}$. Hence from (2.10) and (2.11), we get the desired conclusion.

Theorem 2.13. If T and T^{2} are of class $[2 Q N]$ and $N(T) \subset N\left(T^{*}\right)$, then T^{2} is quasinormal.

Proof. By the condition that T^{2} is of class [2QN], we have

$$
\begin{aligned}
\left(T^{* 2} T^{2}\right) T^{* 4} & =T^{* 4}\left(T^{* 2} T^{2}\right) \\
& =T^{*} T^{* 4}\left(T^{*} T\right) T \\
& =T^{*}\left(T^{*} T\right) T^{* 4} T \quad[T \text { is of class }[2 Q N]] \\
& =T^{*}\left(T^{*} T\right) T^{*}\left(T^{*} T\right) T^{* 2}
\end{aligned}
$$

Thus we have

$$
\left\{\left(T^{* 2} T^{2}\right) T^{* 2}-\left[T^{*}\left(T^{*} T\right)\right]^{2}\right\} T^{* 2}=0
$$

or

$$
T^{2}\left\{T^{2}\left(T^{* 2} T^{2}\right)-\left[\left(T^{*} T\right) T\right]^{2}\right\}=0
$$

Then under the kernel condition

$$
T\left\{T^{2}\left(T^{* 2} T^{2}\right)-\left[\left(T^{*} T\right) T\right]^{2}\right\}=0
$$

or

$$
\left\{\left(T^{* 2} T^{2}\right) T^{* 2}-\left[T^{*}\left(T^{*} T\right)\right]^{2}\right\} x=0 \text { for } x \in \operatorname{clR}\left(T^{*}\right)
$$

Since $N(T) \subset N\left(T^{*}\right)$,

$$
\left\{\left(T^{* 2} T^{2}\right) T^{* 2}-\left[T^{*}\left(T^{*} T\right)\right]^{2}\right\} y=0 \text { for } \mathrm{y} \in N(T)
$$

Thus

$$
\left\{\left(T^{* 2} T^{2}\right) T^{* 2}-\left[T^{*}\left(T^{*} T\right)\right]^{2}\right\}=0
$$

or

$$
\begin{aligned}
T^{2}\left(T^{* 2} T^{2}\right) & =\left[\left(T^{*} T\right) T\right]^{2} \\
& =T^{*} T^{2} T^{*} T^{2} \\
& =T^{*} T^{2}\left(T^{*} T\right) T \\
& =T^{*}\left(T^{*} T\right) T^{3} \quad[T \text { is of class } \quad[2 Q N] \\
& =\left(T^{* 2} T^{2}\right) T^{2} .
\end{aligned}
$$

This proves the result.
Theorem 2.14. Let T be an operator of class $[2 Q N]$ with polar decomposition $T=U|T|$. If $N\left(T^{*}\right) \subset N(T)$, then the operator S with polar decomposition $U^{2}|T|$ is normal.

Proof. It follows by Proposition 2.7 that T^{2} is normal and $N\left(T^{*}\right)=N\left(T^{* 2}\right)$ and by Lemma 2.11 we have

$$
\begin{equation*}
N(T)=N\left(T^{*}\right) \tag{2.12}
\end{equation*}
$$

As a consequence, U turns out to be normal and it is easy to verify that

$$
|T| U|T|^{2} U^{*}|T|=|T| U^{*}|T|^{2} U|T|
$$

Since

$$
\begin{aligned}
& N(|T|)=N(U)=N\left(U^{*}\right), \\
& |T| U|T|^{2} U^{*}=|T| U^{*}|T|^{2} U
\end{aligned}
$$

and hence

$$
U|T|^{2} U^{*}=U^{*}|T|^{2} U
$$

Again by the normality of U, we have

$$
\begin{equation*}
U|T| U^{*}=U^{*}|T| U \tag{2.13}
\end{equation*}
$$

Also $U^{* 2} U^{2}=U^{*} U$, showing U^{2} to be normal partial isometry with $N\left(U^{2}\right)=$ $N(|T|)$. Thus $U^{2}|T|$ is the polar decomposition Note that (2.13) the normality shows that U^{2} and $|T|$ are commuting. Consequently

$$
\begin{aligned}
\left(U^{2}|T|\right)^{*}\left(U^{2}|T|\right) & =|T| U^{* 2} U^{2}|T| \\
& =|T| U^{2} U^{* 2}|T| \\
& =\left(U^{2}|T|\right)\left(U^{2}|T|\right)^{*}
\end{aligned}
$$

This completes the proof.
Corollary 2.15. If T is of class $[2 Q N]$ and $0 \notin W(T)$, then T is normal
Proof. Since $0 \notin W(T)$ gives $N(T)=N\left(T^{*}\right)=\{0\}$ and so by our Proposition 2.7 , T^{2} is normal. Then $\left[T^{*} T, T T^{*}\right]=0$. Now the conclusion follows form [8].

Theorem 2.16. Let T is of class $[2 Q N]$ such that $\left[T^{*} T, T T^{*}\right]=0$. Then T^{2} is quasinormal.

Proof.

$$
\begin{aligned}
\left(T^{* 2} T^{2}\right) T^{2} & =T^{*}\left(T^{*} T\right) T^{3} \\
& =T^{*} T^{2} T^{*} T^{2} \\
& =\left(T^{*} T\right)\left(T T^{*}\right) T^{2} \\
& =\left(T T^{*}\right)\left(T^{*} T\right) T^{2} \\
& =T T^{*} T^{2} T^{*} T \\
& =T\left(T^{*} T\right)\left(T T^{*}\right) T \\
& =T\left(T T^{*}\right)\left(T^{*} T\right) T \\
& =T^{2}\left(T^{* 2} T^{2}\right)
\end{aligned}
$$

This proves the result.
Theorem 2.17. If T is of class $[2 Q N]$ and $[3 Q N]$ with $N(T) \subset N\left(T^{*}\right)$, then T is quasinormal.

Proof.

$$
\begin{aligned}
T^{* 3}\left(T^{*} T\right) & =T^{*}\left(T^{*} T\right) T^{* 2} \quad[T \text { is of class }[2 Q N]] \\
& =\left(T^{*} T\right) T^{* 3}
\end{aligned}
$$

Hence

$$
\left[T^{* 2} T-T^{*} T T^{*}\right] T^{* 2}=0
$$

or

$$
T^{2}\left[T^{*} T^{2}-T T^{*} T\right]=0
$$

Since $N(T) \subset N\left(T^{*}\right), N(T)=N\left(T^{2}\right)$ and therefore

$$
T\left[T^{*} T^{2}-T T^{*} T\right]=0, \text { or }\left[T^{* 2} T-T^{*} T T^{*}\right] T^{*}=0
$$

Again by $N(T) \subset N\left(T^{*}\right)$, we get the desired conclusion.
Theorem 2.18. If an operator T of class [2QN] is a 2-isometry, then it is an isometry.

Proof. By the definition of a 2-isometry,

$$
\left(T^{* 2} T^{2}\right)\left(T^{*} T\right)-2\left(T^{*} T\right)^{2}+T^{*} T=0
$$

Since T is of class [2QN]

$$
T^{* 2}\left(T^{*} T\right) T^{2}-2\left(T^{*} T\right)^{2}+T^{*} T=0
$$

that is

$$
\begin{equation*}
T^{* 3} T^{3}-2\left(T^{*} T\right)^{2}+T^{*} T=0 \tag{2.14}
\end{equation*}
$$

Also

$$
T^{*}\left[T^{* 2} T^{2}-2 T^{*} T+I\right] T=0
$$

i.e.

$$
\begin{equation*}
T^{* 3} T^{3}-2 T^{* 2} T^{2}+T^{*} T=0 \tag{2.15}
\end{equation*}
$$

From (2-14) and (2-15) $T^{* 2} T^{2}=\left(T^{*} T\right)^{2}$ and hence

$$
\left(T^{*} T\right)^{2}-2\left(T^{*} T\right)+I=T^{* 2} T^{2}-2 T^{*} T+I=\left(T^{*} T-I\right)^{2}=0
$$

or

$$
T^{*} T=I
$$

Theorem 2.19. If An operator T is of class $[2 Q N] \cap[3 Q N]$ is an n-isometry, then T is an isometry.

Proof. By the definition of n-isometry,
$T^{* n} T^{n} T^{*} T-\binom{n}{1} T^{* n-1} T^{n-1} T^{*} T+\ldots+(-1)^{n-2}\binom{n}{n-2} T^{* 2} T^{2} T^{*} T+(-1)^{n-1}\binom{n}{n-1} T^{*} T T^{*} T+(-1)^{n} T^{*} T=0$.
Since T is of class $[2 Q N] \cap[3 Q N$,$] we have by Proposition 2.6$
$T^{* n+1} T^{n+1}-\binom{n}{1} T^{* n} T^{n}+\ldots+(-1)^{n-2}\binom{n}{n-2} T^{* 3} T^{3}+(-1)^{n}\binom{n}{n-1}\left(T^{*} T\right)^{2}+(-1)^{n} T^{*} T=0$.
Also

$$
\begin{equation*}
T^{*}\left[T^{* n} T^{n}-\binom{n}{1} T^{* n-1} T^{n-1}+\ldots+(-1)^{n-1}\binom{n}{n-1} T^{*} T+(-1)^{n} I\right] T=0 \tag{2.16}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
T^{* n+1} T^{n+1}-\binom{n}{1} T^{* n} T^{n}+\ldots .+(-1)^{n-1}\binom{n}{n-1} T^{* 2} T^{2}+(-1)^{n} T^{*} T=0 \tag{2.17}
\end{equation*}
$$

From (2.16) and (2.17) $T^{2 *} T^{2}=\left(T^{*} T\right)^{2}$. Consequently $\left(T^{*}\right)^{k} T^{k}=\left(T^{*} T\right)^{k}, \quad \forall k \in$ \mathbb{N}, and hence

$$
\left(T^{*} T\right)^{n}-\binom{n}{1}\left(T^{*} T\right)^{n-1}+\ldots .+(-1)^{n-1}\binom{n}{n-1}\left(T^{*} T\right)+(-1)^{n} I=0=\left(I-T^{*} T\right)^{n} .
$$

This completes the proof.
Definition 2.20. An operator $A \in \mathcal{L}(H)$ is said to be quasi-invertible if A has zero kernel and dense range.

Definition 2.21. ([18]) Two operators S and T in $\mathcal{L}(H)$ are quasi-similar if there are quasi-invertible operators A and B in $\mathcal{L}(H)$ which satisfy the equations

$$
A S=T A \quad \text { and } \quad B T=S B
$$

If M is a closed subspace of $H, H=M \oplus M^{\perp}$. If T is in $\mathcal{L}(H)$, then T can be written as a 2×2 matrix with operators entries,

$$
T=\left(\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right)
$$

where $W \in \mathcal{L}(M), \quad X \in \mathcal{L}\left(M^{\perp}, M\right), \quad Y \in \mathcal{L}\left(M, M^{\perp}\right)$, and $Z \in \mathcal{L}\left(M^{\perp}\right)$ (cf. Conway [6]).
Proposition 2.22. If S and T are quasi-similar n-power quasi-normal operators in $\mathcal{L}(H)$ such that $N(S)=N(T), N(T)$ and $N(S)$ are reducing respectively for T and S, then $S_{1}=\left.S\right|_{N(S)^{\perp}}$ and $T_{1}=\left.T\right|_{N(T)^{\perp}}$ are quasi-similar n-power quasi-normal operators.

Proof. Since S and T are quasi-similar, there exists quasi-invertible operators A and B such that $A S=T A$ and $S B=B T$. the $N(S)$ is invariant under both A and B. Thus the matrices of S, T, A and B with respect to decomposition $H=N(S) \oplus N(S)^{\perp}$ are

$$
\left(\begin{array}{cc}
S_{1} & O \\
O & O
\end{array}\right),\left(\begin{array}{cc}
T_{1} & O \\
O & O
\end{array}\right),\left(\begin{array}{cc}
A_{1} & O \\
A_{2} & A_{3}
\end{array}\right),\left(\begin{array}{cc}
B_{1} & O \\
B_{2} & B_{3}
\end{array}\right)
$$

respectively. It is easy to verify that the ranges of A_{1} and B_{1} are dense in $N(S)^{\perp}$. We now show that $N\left(A_{1}\right)=N\left(B_{1}\right)=\{0\}$.
Suppose that $x \in N\left(A_{1}\right)$. Then $T A(x \oplus 0)=0$. The equation $A S=T A$ implies that $x \in N\left(S_{1}\right)$. This implies that $x=0$, and so $N\left(A_{1}\right)=\{0\}$. Likewise $N\left(B_{1}\right)=$
$\{0\}$. Therefore A_{1} and B_{1} are quasi-invertible operators on $N(S)^{\perp}$ and equations $A S=T A$ and $S B=T B$ imply that $A_{1} S_{1}=T_{1} A_{1}$ and $S_{1} B_{1}=B_{1} T_{1}$. Hence S_{1} and T_{1} are quasi-similar. By a similar way as in [10, Proposition 2.1.(iv)] we can see that the operators S_{1} and T_{1} are n-power quasi-normal.

3. THE $\left(\mathbb{Z}^{n}\right)$-CLASS OPERATORS

In this section we consider the class $\left(\mathbb{Z}_{\alpha}^{n}\right)$ of operators T satisfies

$$
\left|T^{n} T^{*} T-T^{*} T T^{n}\right|^{\alpha} \leq c_{\alpha}^{2}(T-\lambda I)^{* n}(T-\lambda I)^{n}, \text { for all } \lambda \in \mathbb{C}
$$

and for a positive α. The motivation is due to S . Mecheri [13] who considered the class of operators T satisfying

$$
\left|T T^{*}-T^{*} T\right|^{\alpha} \leq c_{\alpha}^{2}(T-\lambda I)^{*}(T-\lambda I)
$$

and A. Uchiyama and T. Yoshino [19] who discussed the class of operators T satisfying

$$
\left|T T^{*}-T^{*} T\right|^{\alpha} \leq c_{\alpha}^{2}(T-\lambda I)(T-\lambda I)^{*}
$$

Definition 3.1. For $T \in \mathcal{L}(H)$ we say that T belongs to the class $\left(\mathbb{Z}_{\alpha}^{n}\right)$ for some $\alpha \geq 1$ if there is a positive number c_{α} such that

$$
\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\alpha} \leq c_{\alpha}^{2}(T-\lambda I)^{* n}(T-\lambda I)^{n} \quad \text { for all } \quad \lambda \in \mathbb{C}
$$

or equivalently, if there is a positive number c_{α} such that

$$
\left\|\left|T^{n} T^{*} T-T^{*} T T^{n}\right|^{\frac{\alpha}{2}} x\right\| \leq c_{\alpha}\left\|(T-\lambda I)^{n} x\right\|
$$

for all x in H and $\lambda \in \mathbb{C}$. Also, let

$$
\mathbb{Z}^{n}=\bigcup_{\alpha \geq 1} \mathbb{Z}_{\alpha}^{n}
$$

Remark. An operator T of class $[n Q N]$, it is of class $\left(\mathbb{Z}^{n}\right)$.
In the following examples we give an example of an operator not in the classes \mathbb{Z}^{n}, and an operator of these classes, which are not of class $[n Q N]$.
Example 3.2. If f is a sequence of complex numbers, $f=\langle f(0), f(1), f(2), \ldots\rangle^{T}$.
The p-Cesáro operators C_{p} acting on the Hilbert space l^{2} of square-summable complex sequences f is defined by

$$
\left(C_{p} f\right)(k)=\frac{1}{(k+1)^{p}} \sum_{i=1}^{k} f(i) \quad \text { for fixed real } p>1 \quad \text { and } k=0,1,2, \ldots
$$

These operators was studied extensively in [16] where it was shown, that these operators are bounded and $\quad\left(C_{p}^{*} f\right)(k)=\sum_{i=k}^{\infty} \frac{1}{(i+1)^{p}} f(i)$.
In matrix form, we have

$$
C_{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
\left(\frac{1}{2}\right)^{p} & \left(\frac{1}{2}\right)^{p} & 0 & \cdots \\
\left(\frac{1}{3}\right)^{p} & \left(\frac{1}{3}\right)^{p} & \left(\frac{1}{3}\right)^{p} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS ON HILBERT SPACE 225
We consider the sequence f defined as follows

$$
f(0)=1 \text { and } f(k)=\prod_{j=1}^{k} \frac{j^{p}}{(1+j)^{p}-1} \text { for } k \geq 1
$$

In [16] it is verified that $f \in l^{2}$, is eigenvector for C_{p} associated with eigenvalue 1 , so $f \in N\left(C_{p}-I\right)$, but $f \notin N\left(C_{p}^{*}-I\right)$. It follows that $\left.\|\left(C_{p}-I\right)^{n} f\right) \|=0$.

On the other hand, we have

$$
\left(C_{p}^{n} C_{p}^{*} C_{p}-C_{p}^{*} C_{p} C_{p}^{n}\right) f=\left(C_{p}^{n}-I\right) C_{p}^{*} f \neq 0
$$

Hence, C_{p} is a bounded operator but not of classes \mathbb{Z}^{n}.
Example 3.3. Let T be a weighted shift operator on l^{2} with weights $\alpha_{1}=2, \alpha_{k}=1$ for all $k \geq 2$. That is

$$
T_{\alpha}\left(x_{1}, x_{2}, x_{3}, \ldots . .\right)=\left(0, \alpha_{1} x_{1}, \alpha_{2} x_{2}, \ldots\right) \text { and } T^{*}\left(x_{1}, x_{2}, \ldots\right)=\left(\alpha_{1} x_{2}, \alpha_{2} x_{3}, \ldots\right)
$$

A simple computation shows that

$$
\left(T^{n} T^{*} T-T^{*} T T^{n}\right)(x)=\left(0,0, \ldots, 0,6 x_{1}, 0,0, \ldots\right)
$$

with $6 x_{1}$ at the $(n+1)$ th place.
Morover
$\left(T^{* n} T^{*} T-T^{*} T T^{* n}\right)(x)=\left(-6 x_{n+1}, 0,0, \ldots\right)$ and $\left|T^{n} T^{*} T-T^{*} T T^{n}\right|^{2} x=\left(-36 x_{1}, 0,0, \ldots\right)$.
Therefore T is not of class $[n Q N]$ and however T is of class $\mathbb{Z}_{4}^{n} \subseteq \mathbb{Z}^{n}$.
Lemma 3.4. For each α, β such as $1 \leq \alpha \leq \beta$, we have $\mathbb{Z}_{\alpha}^{n} \subseteq \mathbb{Z}_{\beta}^{n}$.
Proof.

$$
\begin{aligned}
\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\beta} & =\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\frac{\alpha}{2}}\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\beta-\alpha}\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\frac{\alpha}{2}} \\
& \leq\left\|T^{n} T^{*} T-T^{*} T^{n+1}\right\|^{\beta-\alpha}\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\alpha} \\
& \leq\left(2\|T\|^{n+2}\right)^{\beta-\alpha} c_{\alpha}^{2}(T-\lambda I)^{* n}(T-\lambda I)^{n} \\
& =c_{\beta}^{2}(T-\lambda I)^{* n}(T-\lambda I)^{n}
\end{aligned}
$$

where

$$
C_{\beta}^{2}=\left(2\|T\|^{n+2}\right)^{\beta-\alpha} c_{\alpha}^{2}
$$

There exists an Hilbert space $H^{\circ}: H \subset H^{\circ}$, and an isometric ${ }^{*}$-homomorphism preserving order, i.e, for all $T, S \in \mathcal{L}(H)$ and $\lambda, \mu \in \mathbb{C}$, we have

Proposition 3.5. ([6],[13] Berberian technique) Let H be a complex Hilbert space. Then there exists a Hilbert space $H^{\circ} \supset H$ and a map

$$
\Phi: \mathcal{L}(H) \rightarrow \mathcal{L}\left(H^{\circ}\right): T \longmapsto T^{\circ}
$$

satisfying: Φ is an ${ }^{*}$-isometric isomorphism preserving the order such that

1. $\Phi\left(T^{*}\right)=\Phi(T)^{*}$.
2. $\Phi(\lambda T+\mu S)=\lambda \Phi(T)+\mu \Phi(S)$.
3. $\Phi\left(I_{H}\right)=I_{H^{\circ}}$.
4. $\Phi(T S)=\Phi(T) \Phi(S)$.
5. $\|\Phi(T)\|=\|T\|$.
6. $\Phi(T) \leq \Phi(S)$ if $T \leq S$.
7. $\sigma(\Phi(T))=\sigma(T), \quad \sigma_{a}(T)=\sigma_{a}(\Phi(T))=\sigma_{p}(\Phi(T))$.
8. If T is a positive operator, then $\Phi\left(T^{\alpha}\right)=|\Phi(T)|^{\alpha}$ for all $\alpha>0$.

Lemma 3.6. If an operator T is of class $[n Q N]$, then $\Phi(T)$ is of class $[n Q N]$.
Lemma 3.7. If an operator T is of class \mathbb{Z}^{n}, then $\Phi(T)$ is of class \mathbb{Z}^{n}.
Proof. Since T is of class \mathbb{Z}^{n}, there exists $\alpha \geq 1$ and $c_{\alpha}>0$ such that

$$
\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\alpha} \leq c_{\alpha}^{2}(T-\lambda)^{* n}(T-\lambda I)^{n} \text { for all } \lambda \in \mathbb{C}
$$

It follows from the properties of the map Φ that

$$
\Phi\left(\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{\alpha}\right) \leq \Phi\left(c_{\alpha}^{2}(T-\lambda)^{* n}(T-\lambda I)^{n}\right) \text { for all } \lambda \in \mathbb{C} .
$$

By the condition 8. above we have

$$
\Phi\left(\left|T^{n} T^{*} T-T^{*} T^{n+11}\right|^{\alpha}\right)=\left|\Phi\left(\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|\right)\right|^{\alpha}, \quad \text { for all } \alpha>0
$$

Therefore

$$
\left|\Phi(T)^{n} \Phi\left(T^{*}\right) \Phi(T)-\Phi\left(T^{*}\right) \Phi(T)^{n+1}\right| \leq \Phi\left(c_{\alpha}^{2}(T-\lambda)^{* n}(T-\lambda I)^{n}\right) \text { for all } \lambda \in \mathbb{C}
$$

Hence $\Phi(T)$ is of class \mathbb{Z}^{n}.
Proposition 3.8. Let T be a class \mathbb{Z}^{n} operator and assume that there exists a subspace \mathbb{M} that reduces T, then $T \mid \mathbb{M}$ is of class \mathbb{Z}^{n} operator.

Proof. Since T is of class \mathbb{Z}^{n}, there exists an integer $p \geq 1$ and $c_{p}>0$ such that
$\left\|\mid T^{n} T^{*} T-T^{*} T^{n+1} 2^{2^{p-1}} x\right\| \leq c_{2^{p}}\left\|(T-\lambda I)^{n} x\right\|$, for all $\mathrm{x} \in H$, for all $\lambda \in \mathbb{C}$.
\mathbb{M} reduces T, T can be written respect to the composition $H=\mathbb{M} \oplus \mathbb{M}^{\perp}$ as follows:

$$
T=\left(\begin{array}{cc}
A & O \\
O & B
\end{array}\right)
$$

By a simple calculation we get

$$
T^{n} T^{*} T-T^{*} T^{n+1}=\left(\begin{array}{cc}
A^{n} A^{*} A-A^{*} A^{n+1} & O \\
O & B^{n} B^{*} B-B^{*} B^{n+1}
\end{array}\right)
$$

By the uniqueness of the square root, we obtain

$$
\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|=\left(\begin{array}{cc}
\left|A^{n} A^{*} A-A^{*} A^{n+1}\right| & O \\
O & \left|B^{n} B^{*} B-B^{*} B^{n+1}\right|
\end{array}\right)
$$

Now by iteration to the order 2^{p}, it results that

$$
\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{2^{p-1}}=\left(\begin{array}{cc}
\left|A^{n} A^{*} A-A^{*} A^{n+1}\right|^{2^{p-1}} & 0 \\
0 & \left|B^{n} B^{*} B-B^{*} B^{n+1}\right|^{2^{p-1}}
\end{array}\right)
$$

Therefore for all $x \in \mathbb{M}$, we have
$\left\|\left|T^{n} T^{*} T-T^{*} T^{n+1}\right|^{2^{p-1}} x\right\|=\left\|\left|A^{n} A^{*} A-A^{*} A^{n+1}\right|^{2^{p-1}} x\right\| \leq c_{2^{p}}\|(T-\lambda I) x\|=\left\|(A-\lambda I)^{n} x\right\|$.
Hence A is of class $\mathbb{Z}_{2^{p}}^{n} \subset \mathbb{Z}^{n}$.
Theorem 3.9. Let T of class \mathbb{Z}^{1}.
(1) If $\lambda \in \sigma_{p}(T), \lambda \neq 0$, then $\bar{\lambda} \in \sigma_{p}\left(T^{*}\right)$, furthermore if $\lambda \neq \mu$, then E_{λ} (the proper subspace associated with λ) is orthogonal to E_{μ}.
(2) If $\lambda \in \sigma_{a}(T)$, then $\bar{\lambda} \in \sigma_{a}\left(T^{*}\right)$.
(3) $T T^{*} T-T^{*} T^{2}$ is not invertible.

Proof.

ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS ON HILBERT SPACE 227
(1) If $T \in \mathbb{Z}^{1}$, then $T \in \mathbb{Z}_{\alpha}^{1}$ for some $\alpha \geq 1$ and there exists a positive constant c_{α} such that

$$
\left|T T^{*} T-T^{*} T^{2}\right|^{\alpha} \leq c_{\alpha}(T-\lambda I)^{*}(T-\lambda I) \text { for all } \lambda \in \mathbb{C}
$$

As $T x=\lambda x$ implies $\left|T T^{*} T-T^{*} T^{2}\right|^{\frac{\alpha}{2}} x=0$ and $\left(T T^{*}-T^{*} T\right) x=0$ and hence

$$
\left\|(T-\lambda)^{*} x\right\|=\|(T-\lambda) x\|
$$

$$
\lambda\langle x \mid y\rangle=\langle\lambda x \mid y\rangle=\langle T x \mid y\rangle=\left\langle x \mid T^{*} y\right\rangle=\langle x \mid \bar{\mu} y\rangle=\mu\langle x \mid y\rangle
$$

Hence

$$
\langle x \mid y\rangle=0
$$

(2) Let $\lambda \in \sigma_{a}(T)$ from the condition 7 . above, we have

$$
\sigma_{a}(T)=\sigma_{a}(\Phi(T))=\sigma_{p}(\phi(T))
$$

Therefore $\lambda \in \sigma_{p}(\phi(T))$. By applying Lemma 3.7 and the above condition 1., we get

$$
\bar{\lambda} \in \sigma_{p}\left(\Phi(T)^{*}\right)=\sigma_{p}\left(\Phi\left(T^{*}\right)\right)
$$

(3) Let $T \in \mathbb{Z}^{1}$. then there exists an integer $p \geq 1$ and $c_{p}>0$ such that

$$
\left\|\left|T T^{*} T-T^{*} T^{2}\right|^{2^{p-1}} x\right\| \leq c_{p}^{2}\|(T-\lambda I) x\|^{2} \quad \text { for all } \quad x \in H \text { and for all } \lambda \in \mathbb{C} .
$$

It is know that $\sigma_{a}(T) \neq \emptyset$. If $\lambda \in \sigma_{a}(T)$, then there exists a normed sequence $\left(x_{m}\right)$ in H such that $\left\|(T-\lambda I) x_{m}\right\| \longrightarrow 0$ as $m \longrightarrow \infty$. Then

$$
\left(T T^{*} T-T^{*} T^{2}\right) x_{m} \longrightarrow 0 \text { as } m \longrightarrow \infty
$$

and so, $\left(T T^{*} T-T^{*} T^{2}\right)$ is not invertible.
Acknowledgments. The author would like to express his cordial gratitude to the referee for valuable advice and suggestions.

References

[1] J. Agler and M. Stankus, m-Isometric transformations of Hilbert space I, Integral Equations and Operator Theory,21 (1995), 383-429.
[2] T. Audo and I. Gohberg, Operator Theory and Complex Analysis. Workshop on operator theory and Complex Analysis. Sapporo (Japon) June (1991).
[3] A. Bala. A note on quasi-normal operators. Indian J.pue appl.Math, 8, (1977),463-65.
[4] S. K. Berberian, Introduction to Hilbert Spaces. New York: Chelsea Publishing Company, (1976).
[5] A. Brown, On a class of operators, Proc. Amer. Math. Soc, 4 (1953), 723-728.
[6] J. B. Conway, A course in Functional analysis Second Edition. Springer (1990).
[7] S.S. Dragomir and M.S. Moslehian, Some Inequalities for (α, β)-Normal Operators in Hilbert spaces. Facta Universitatis (NIS) Ser. Math. Inform. Vol. 23 (2008), 39-47.
[8] M. R. Embry, Conditions implying normality in Hilbert space, Pacific. J. Math. 18 (1966), 457-460.
[9] A. A.S. Jibril. On n-Power Normal Operators.The Journal for Science and Engenering . Volume 33, Number 2A.(2008) 247-251.
[10] A. A.S. Jibril, On 2-Normal Operators, Dirasat, Vol.(23) No. 2
[11] P. R. Halmos, A Hilbert Space problem Book. sipringer-Verlag, New York. (1982).
[12] I. Ho Jeon, Se Hee Kim, Eungil Ko, and Ji Eun Park, On Positive-normal Operators . Bull. Korean Math. Soc. 39 (2002), No. 1, pp. 33-41.
[13] S. Mecheri, On the normality of operators. Revista colombiana de Mathematicas. Vol 39. 87-95 (2005).
[14] S. M. Patel, 2-Isometric Operators, Glasnik Matematicki. Vol. 37 .(2002), 143-147.
[15] C. R. Putnam, Hyponormal contractions and stong power convergence. Pacific journal of mathematics vol. 57.No.2,(1975) .531-53
[16] H. C. Rhaly, Jr., p-Cesáro matrices, Houston Math. J. 15 (1989), no. 1, 137-146.
[17] A. Saddi and O. A. Mahmoud Sid Ahmed, m-Partial Isometries on Hilbert spaces. Inetrnat.J. Functional Analysis, Operator Theory and Applications. Vol.2,No. 1,2010, 67-83.
[18] M. Sang Lee. A note on Quasi-similar Quasi-hyponormal Operators. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 2 (1995), no. 2, 91-95.
[19] A. Uchiyama and T. Yoshino, On the class (Y) operators, Nihonkai. Math. J., 8 (1997), 179-194.

Mathematics Department, College of Science. Aljouf University Aljouf 2014. Saudi Arabia

E-mail address: sidahmed@ju.edu.sa

[^0]: 2000 Mathematics Subject Classification. 47B20, 47B99.
 Key words and phrases. Operator, Quasi-normal, n-normal; reducing subspace, Hilbert space. © 2008 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted July, 2010. Published June 2011.

