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ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS

ON HILBERT SPACE

(COMMUNICATED BY SALAH MECHERI)

OULD AHMED MAHMOUD SID AHMED

Abstract. Let T be a bounded linear operator on a complex Hilbert space

H. In this paper we investigate some, properties of the class of n-power quasi-
normal operators , denoted [nQN ], satisfying Tn|T |2 − |T |2Tn = 0 and some

relations between n-normal operators and n-quasinormal operators.

1. INTRODUCTION AND TERMINOLOGIES

A bounded linear operator on a complex Hilbert space, is quasi-normal if T
and T ∗T commute. The class of quasi-normal operators was first introduced and
studied by A.Brown [5] in 1953. From the definition, it is easily seen that this class
contains normal operators and isometries. In [9] the author introduce the class
of n-power normal operators as a generalization of the class of normal operators
and study sum properties of such class for different values of the parameter n. In
particular for n = 2 and n = 3 (see for instance [9,10]). In this paper, we study
the bounded linear transformations T of complex Hilbert space H that satisfy an
identity of the form

TnT ∗T = T ∗TTn, (1.1)

for some integer n. Operators T satisfying (1.1) are said to be n-power quasi-
normal.

Let L(H) = L(H,H) be the Banach algebra of all bounded linear operators on
a complex Hilbert space H. For T ∈ L(H), we use symbols R(T ) , N(T ) and T ∗

the range , the kernel and the adjoint of T respectively,.

Let W (T ) = { 〈Tx | x〉 : x ∈ H, ‖x‖ = 1} the numerical range of T . A subspace
M ⊂ H is said to be invariant for an operator T ∈ L(H) if TM ⊂ M, and in
this situation we denote by T |M the restriction of T to M. Let σ(T ), σa(T ) and
σp(T ), respectively denote the spectrum, the approximate point spectrum and point
spectrum of the operator T .
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For any arbitrary operator T ∈ L(H), |T | = (T ∗T )
1
2 and

[T ∗, T ] = T ∗T − TT ∗ = |T |2 − |T ∗|2

(the self-commutator of T ).

An operator T is normal if T ∗T = TT ∗, positive-normal (posinormal) il there ex-
its a positive operator P ∈ L(H) such that TT ∗ = T ∗PT , hyponormal if [T ∗, T ]
is nonnegative(i.e. |T ∗|2 ≤ |T |2, equivalently ‖T ∗x‖ ≤ ‖Tx‖, ∀ x ∈ H), quasi-
hyponormal if T ∗[T ∗, T ]T is nonnegative, paranormal if ‖Tx‖2 ≤ ‖T 2x‖ for all
x ∈ H, n-isometry if

T ∗nTn −
(n
1

)
T ∗n−1Tn−1 +

(n
2

)
T ∗n−2Tn−2...+ (−1)nI = 0,

m-hyponormal if there exists a positive number m, such that

m2(T − λI)∗(T − λI)− (T − λI)(T − λI)∗ ≤ 0; for all λ ∈ C, .

Let [N ]; [QN ]; [H]; and (m −H) denote the classes constituting of normal, quasi-
normal, hyponormal, and m-hyponormal operators. Then

[N ] ⊂ [QN ] ⊂ [H] ⊂ [m−H].

For more details see [1, 2, 3, 11, 14 ,15].

Definition 1.1. ([7]) An operator T ∈ L(H) is called (α, β)-normal (0 ≤ α ≤ 1 ≤
β) if

α2T ∗T ≤ TT ∗ ≤ β2T ∗T.

or equivalently
α‖Tx‖ ≤ ‖T ∗x‖ ≤ β‖Tx‖ for all x ∈ H.

Definition 1.2. ([9]) Let T ∈ L(H). T is said n-power normal operator for a
positive integer n if

TnT ∗ = T ∗Tn.

The class of all n-normal operators is denoted by [nN ].

Proposition 1.3. ([9]) Let T ∈ L(H), then T is of class [nN ] if and only if Tn is
normal for any positif integer n.

Remark. T is n-power normal if and only if Tn is (1,1)-normal.

The outline of the paper is as follows: Introduction and terminologies are de-
scribed in first section. In the second section we introduce the class of n-power
quasi-normal operators in Hilbert spaces and we develop some basic properties of
this class. In section three we investigate some properties of a class of operators
denoted by (Zn) contained the class [nQN.]

2. BASIC PROPERTIES OF THE CLASS [nQN ]

In this section, we will study some property which are applied for the
n−power quasi-normal operators.

Definition 2.1. For n ∈ N, an operator T ∈ L(H) is said to be n-power quasi-
normal operator if

TnT ∗T = T ∗Tn+1.
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We denote the set of n-power quasi-normal operators by [nQN ]. It is obvious
that the class of all n-power quasi-normal operators properly contained classes of
n-normal operators and quasi-normal operators, i.e., the following inclusions holds

[nN ] ⊂ [nQN ] and [QN ] ⊂ [nQN ].

Remark.

(1) A 1-power quasi-normal operator is quasi-normal.
(2) Every quasi-normal operator is n-power quasi-normal for each n.
(3) It is clear that a n-power normal operator is also n-power quasi-normal.

That the converse need not hold can be seen by choosing T to be the unilat-

eral shift, that is, if H = l2, the matrix T =


0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
. . . . . . . . . . . .

 . It is

easily verified that T 2T ∗ − T ∗T 2 6= 0 and (T 2T ∗ − T ∗T 2)T = 0. So that T
is not 2-power normal but is a 2-power quasi-normal.

Remark. An operator T is n-power quasi-normal if and only if

[Tn, T ∗T ] = [Tn, T ∗]T = 0.

Remark. An operator T is n-power quasi-normal if and only if

Tn|T |2 = |T |2Tn.

First we record some elementary properties of [nNQ]

Theorem 2.2. If T ∈ [nQN ], then

(1) T is of class [2nQN ].
(2) if T has a dense range in H , T is of class [nN ]. In particular, if T is

invertible, then T−1 is of class [nQN ].
(3) If T and S are of class [nQN ] such that [T, S] = [T, S∗] = 0, then TS is

of class [nQN ].
(4) If S and T are of class [nQN ] such that ST = TS = T ∗S = ST ∗ = 0,,

then S + T is of class [nQN ].

Proof.

(1) Since T is of [nQN ], then

TnT ∗T = T ∗TTn. (2.1)

Multiplying (2.1) to the left by Tn, we obtain

T 2nT ∗T = T ∗TT 2n.

Thus T is of class [2nQN ].
(2) Since T is of class [nQN ], we have for y ∈ R(T ) : y = Tx, x ∈ H, and

‖(TnT ∗ − T ∗Tn)y‖ = ‖(TnT ∗ − T ∗Tn)Tx‖ = ‖(TnT ∗T − T ∗Tn+1)x‖ = 0.

Thus, T is n-power normal on R(T ) and hence T is of class [nN ]. In case
T invertible, then it is an invertible operator of class [nN ] and so

TnT ∗ = T ∗Tn.

This in turn shows that

T−n(T ∗−1T−1) = [(TT ∗)Tn]−1 = [Tn+1T ∗]−1 = [T ∗−1T−1]T−n,
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which prove the result.
(3)

(TS)n(TS)∗TS = TnSnT ∗S∗TS = TnT ∗TSnS∗S

= T ∗Tn+1S∗Sn+1 = (TS)∗(TS)n+1.

Hence, TS is of class [nQN ].
(4)

(T + S)n(T + S)∗(T + S) = (Tn + Sn)(T ∗T + S∗S)

= TnT ∗T + SnS∗S

= T ∗Tn+1 + S∗Sn+1

= (T + S)∗(T + S)n+1.

Which implies that T + S is of class [nQN ].

Proposition 2.3. If T is of class [nQN ] such that T is a partial isometry, then T
is of class [(n+ 1)QN ].

Proof. Since T is a partial isometry, therefore

TT ∗T = T [4], p.153). (2.2)

Multiplying (2.2) to the left by T ∗Tn+1 and using the fact that T is of class [nNQ],
we get

T ∗Tn+2 = T ∗Tn+2T ∗T

= TnT ∗T.TT ∗T

= Tn+1T ∗T,

which implies that T is of class [(n+ 1)QN ].

The following examples show that the two classes [2NQ] and [3NQ] are not the
same.

Example 2.4. Let H = C3 and let T =

 −1 0 0
0 0 0
1 0 1

 ∈ L(C3).Then by simple

calculations we see that T is not of class [3QN ] but of class [2QN ].

Example 2.5. Let H = C3 and let S =

 1 1 1
0 0 0
−1 0 −1

 ∈ L(C3).Then by simple

calculations we see that S is not of class [2QN ] but of class [3QN ].

Proposition 2.6. Let T ∈ L(H) such that T is of class [2QN ]
⋂

[3QN ], then T is
of class [nQN ] for all positive integer n ≥ 4.

Proof. We proof the assertion by using the mathematical induction. For n = 4 it
is a consequence of Theorem 2.2. 1 .

We prove this for n = 5. Since T ∈ [2QN ] ,

T 2T ∗T = T ∗T 3, (2.3)

multiplying (2.3) to the left by T 3 we get

T 5T ∗T = T 3T ∗T 3.
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Thus we have

T 5T ∗T = T 3T ∗T 3

= T ∗T 4T 2

= T ∗T 6.

Now assume that the result is true for n ≥ 5 i.e

TnT ∗T = T ∗TTn,

then

Tn+1T ∗T = TT ∗Tn+1

= TT ∗T 3Tn−2

= T 3T ∗TTn−2

= T ∗T 4T ∗(n−2)

= T ∗Tn+2.

Thus T is of class [(n+ 1)QN ].

Proposition 2.7. If T is of class [nQN ] such that N(T ∗) ⊂ N(T ), then T is of
class [nN ].

Proof. In view of the inclusion N(T ∗) ⊂ N(T ), it is not difficult to verify the
normality of Tn.

Next couple of results shows that [nQN ] is not translation invariant

Theorem 2.8. If T and T − I are of class [2QN ], then T is normal.

Proof. First we see that the condition on T − I implies

T 2(T ∗T )− T 2T ∗ − 2T (T ∗T ) + 2TT ∗ = (T ∗T )T 2 − T ∗T 2 − 2(T ∗T )T + 2T ∗T.

Since T is of class [2QN ], we have

−T 2T ∗ − 2T (T ∗T ) + 2TT ∗ = −T ∗T 2 − 2(T ∗T )T + 2T ∗T,

or
− TT ∗2 − 2(T ∗T )T ∗ + 2TT ∗ = −T ∗2T − 2T ∗(T ∗T ) + 2T ∗T (2.4)

We first show that (2.4) implies

N(T ∗) ⊂ N(T ) (2.5)

Suppose T ∗x = 0. From (2.4), we get

− 3T ∗2Tx+ 2T ∗Tx = 0. (2.6)

Then
−3T ∗3Tx+ 2T ∗2Tx = 0.

Therefore, as T is of class [2QN ],

−3T ∗TT ∗2x+ 2T ∗2Tx = 0

and hence
2T ∗2Tx = 0.

Consequently, (2.6) gives 2T ∗Tx = 0 or Tx = 0.This proves (2.5). As observe in
Proposition 2.7 and Proposition 1.3 T 2 is normal. This along with (2.4) gives

−T (T ∗T ) + TT ∗ = −(T ∗T )T + T ∗T,
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or
T ∗(T ∗T − TT ∗) = T ∗T − TT ∗. (2.7)

If N(T ∗ − I) = {0}, then (2.7) implies T is normal.

Now assume that N(T ∗ − I) is non trivial. Let T ∗x = x. Then (2.6) gives

T ∗2Tx− T ∗Tx = T ∗Tx− Tx.
Since T ∗2T = TT ∗2, we have

T ∗Tx = Tx.

Therefore

||Tx||2 =< T ∗Tx | x >=< Tx | x >=< x | T ∗x >= ||x||2.
Hence

||Tx− x||2 = ||Tx||2 + ||x||2 − 2Re < Tx | x >
= ||Tx||2 − ||x||2

= 0.

Or Tx = x. Thus N(T ∗ − I) ⊂ N(T − I).This along with (2.7), yields

T (T ∗T − TT ∗) = T ∗T − TT ∗

and so
T (T ∗T − TT ∗)T = (T ∗T − TT ∗)T

or
TT ∗T 2 − T 2T ∗T = T ∗T 2 − TT ∗T.

Since T 2T ∗ = T ∗T 2 and T 3T ∗ = T ∗T 3 we deduce that T ∗T 2 = TT ∗T. Thus T is
quasinormal. From (2.5), the normality of T follows.

In attempt to extend the above result for operators of class [nQN ], we prove

Theorem 2.9. If T is of class [2QN ] ∩ [3QN ] such that T − I is of class [nQN ],
then T is normal.

Proof. Since T − I is of class [nQN ], we have
n∑
k=1

akT
kT ∗T −

n∑
k=1

akT
kT ∗ = T ∗T

n∑
k=1

akT
k − T ∗

n∑
k=1

akT
k, ak = (−1)n−k(nk ).

Under the condition on T , we have by Proposition 2.6

a1T (T ∗T )− (

n∑
k=1

akT
k)T ∗ = a1(T ∗T )T − T ∗(

n∑
k=1

akT
k)

or

a1(T ∗T )T ∗ − T (

n∑
k=1

akT
∗k) = a1T

∗(T ∗T )− (

n∑
k=1

akT
∗k)T. (2.8)

(2.8) implies that N(T ∗) ⊂ N(T ). In fact, let T ∗x = 0. From (2.8),we have

a1T
∗2Tx− (

n∑
k=1

akT
∗k)Tx = 0.

T is of class [2QN ] and of class [3QN ], we deduce that

a1T
∗2Tx− a1T ∗Tx− a2T ∗2Tx = 0 (2.9)
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and hence

a1T
∗3Tx− a1T ∗2T − a2T ∗3Tx = 0

Hence

a1T
∗2Tx.

Consequently (2.9) gives T ∗Tx = 0, which implies that Tx = 0.
It follows by Proposition 2.7 that T k is normal for k = 2, 3, ..., n and hence

T (T ∗T )− TT ∗ = (T ∗T )T − T ∗T

or

T ∗(TT ∗ − T ∗T ) = TT ∗ − T ∗T.
Hence,

(T ∗ − I)(TT ∗ − T ∗T ) = 0.

A similar argument given in as in the proof of Theorem 2.8 gives the desired result.

Theorem 2.10. If T and T ∗ are of class [nQN ], then Tn is normal.

First we establish

Lemma 2.11. If T is of class [nQN ], then N(Tn) ⊂ N(T ∗n) for n ≥ 2.

Proof. Suppose Tnx = 0. Then

T ∗n(T ∗T )Tn−1x = 0.

By hypotheses,

T ∗TT ∗nTn−1x = 0,

which implies

TT ∗nTn−1x = 0.

Hence

T ∗nTn−1x = 0.

Under the condition on T , we have

T ∗TT ∗nTn−2x = 0

Hence

T ∗nTn−2x = 0.

By repeating this process we can find

T ∗nx = 0.

Proof of Theorem 2.10. By hypotheses and Lemma 2.11

N(T ∗n) = N(Tn).

Since T is of [nQN ], [TnT ∗ − T ∗Tn]Tn = 0,i.e. [TnT ∗ − T ∗Tn] = 0 on clR(T ).
also the fact that N(T ∗) is a subset of N(Tn) gives [TnT ∗ − T ∗Tn] = 0 on N(T ∗).
Hence the result follows.

Theorem 2.12. If T and T 2 are of class [2QN ], and T is of class [3QN ], then T 2

is quasinormal.
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Proof. The condition that T 2 is of class [2QN ] gives

T ∗4(T ∗2T 2) = (T ∗2T 2)T ∗4

Implies
T ∗5(T ∗T )T = (T ∗2T 2)T ∗4

Since T if of class [3QN ], we have

T ∗2(T ∗T )T ∗3T = (T ∗2T 2)T ∗4 .

And hence

T ∗2(T ∗T )2T ∗2 = (T ∗2T 2)T ∗4 [T is of class [2QN ]].

Implies
(T ∗T )2T ∗4 = (T ∗2T 2)T ∗4 [T is of class [2QN ]]

or
T 4((T ∗T )2 − T ∗2T 2) = 0.

By Lemma 2.11,
T ∗2T 2((T ∗T )2 − T ∗2T 2) = 0

or

T 2[(T ∗T )2 − T ∗2T 2)] = 0. (2.10)

Hence

T ∗2[((T ∗T )2 − T ∗2T 2)] = 0, [N(T 2) is a subset of N(T ∗2)].

Or
[((T ∗T )2 − T ∗2T 2)]T 2 = 0. (2.11)

Since T is of class [2QN ], T 2 commutes with (T ∗T )2. Hence from (2.10) and (2.11),
we get the desired conclusion.

Theorem 2.13. If T and T 2 are of class [2QN ] and N(T ) ⊂ N(T ∗), then T 2 is
quasinormal.

Proof. By the condition that T 2 is of class [2QN ], we have

(T ∗2T 2)T ∗4 = T ∗4(T ∗2T 2)

= T ∗T ∗4(T ∗T )T

= T ∗(T ∗T )T ∗4T [T is of class [2QN ]]

= T ∗(T ∗T )T ∗(T ∗T )T ∗2

Thus we have
{(T ∗2T 2)T ∗2 − [T ∗(T ∗T )]2}T ∗2 = 0

or
T 2{T 2(T ∗2T 2)− [(T ∗T )T ]2} = 0.

Then under the kernel condition

T{T 2(T ∗2T 2)− [(T ∗T )T ]2} = 0

or
{(T ∗2T 2)T ∗2 − [T ∗(T ∗T )]2}x = 0 for x ∈ clR(T ∗).

Since N(T ) ⊂ N(T ∗),

{(T ∗2T 2)T ∗2 − [T ∗(T ∗T )]2}y = 0 for y ∈ N(T ).
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Thus

{(T ∗2T 2)T ∗2 − [T ∗(T ∗T )]2} = 0

or

T 2(T ∗2T 2) = [(T ∗T )T ]2

= T ∗T 2T ∗T 2

= T ∗T 2(T ∗T )T

= T ∗(T ∗T )T 3 [T is of class [2QN ]

= (T ∗2T 2)T 2.

This proves the result.

Theorem 2.14. Let T be an operator of class [2QN ] with polar decomposition
T = U |T |. If N(T ∗) ⊂ N(T ), then the operator S with polar decomposition U2|T |
is normal.

Proof. It follows by Proposition 2.7 that T 2 is normal and N(T ∗) = N(T ∗2) and
by Lemma 2.11 we have

N(T ) = N(T ∗). (2.12)

As a consequence, U turns out to be normal and it is easy to verify that

|T |U |T |2U∗|T | = |T |U∗|T |2U |T |.

Since

N(|T |) = N(U) = N(U∗),

|T |U |T |2U∗ = |T |U∗|T |2U
and hence

U |T |2U∗ = U∗|T |2U.
Again by the normality of U , we have

U |T |U∗ = U∗|T |U (2.13)

Also U∗2U2 = U∗U, showing U2 to be normal partial isometry with N(U2) =
N(|T |). Thus U2|T | is the polar decomposition Note that (2.13) the normality
shows that U2 and |T | are commuting. Consequently

(U2|T |)∗(U2|T |) = |T |U∗2U2|T |
= |T |U2U∗2|T |
= (U2|T |)(U2|T |)∗.

This completes the proof.

Corollary 2.15. If T is of class [2QN ] and 0 /∈W (T ), then T is normal

Proof. Since 0 /∈W (T ) gives N(T ) = N(T ∗) = {0} and so by our Proposition 2.7
, T 2 is normal. Then [T ∗T, TT ∗] = 0. Now the conclusion follows form [8].

Theorem 2.16. Let T is of class [2QN ] such that [T ∗T, TT ∗] = 0. Then T 2 is
quasinormal.
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Proof.

(T ∗2T 2)T 2 = T ∗(T ∗T )T 3

= T ∗T 2T ∗T 2

= (T ∗T )(TT ∗)T 2

= (TT ∗)(T ∗T )T 2

= TT ∗T 2T ∗T

= T (T ∗T )(TT ∗)T

= T (TT ∗)(T ∗T )T

= T 2(T ∗2T 2).

This proves the result.

Theorem 2.17. If T is of class [2QN ] and [3QN ] with N(T ) ⊂ N(T ∗), then T is
quasinormal.

Proof.

T ∗3(T ∗T ) = T ∗(T ∗T )T ∗2 [T is of class [2QN ]]

= (T ∗T )T ∗3

Hence
[T ∗2T − T ∗TT ∗]T ∗2 = 0

or
T 2[T ∗T 2 − TT ∗T ] = 0,

Since N(T ) ⊂ N(T ∗), N(T ) = N(T 2) and therefore

T [T ∗T 2 − TT ∗T ] = 0, or [T ∗2T − T ∗TT ∗]T ∗ = 0.

Again by N(T ) ⊂ N(T ∗),we get the desired conclusion.

Theorem 2.18. If an operator T of class [2QN] is a 2-isometry , then it is an
isometry.

Proof. By the definition of a 2-isometry,

(T ∗2T 2)(T ∗T )− 2(T ∗T )2 + T ∗T = 0.

Since T is of class [2QN ]

T ∗2(T ∗T )T 2 − 2(T ∗T )2 + T ∗T = 0,

that is
T ∗3T 3 − 2(T ∗T )2 + T ∗T = 0. (2.14)

Also

T ∗[T ∗2T 2 − 2T ∗T + I]T = 0

i.e.
T ∗3T 3 − 2T ∗2T 2 + T ∗T = 0. (2.15)

From (2-14) and (2-15) T ∗2T 2 = (T ∗T )2 and hence

(T ∗T )2 − 2(T ∗T ) + I = T ∗2T 2 − 2T ∗T + I = (T ∗T − I)2 = 0

or
T ∗T = I.
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Theorem 2.19. If An operator T is of class [2QN ]∩ [3QN ] is an n-isometry, then
T is an isometry.

Proof. By the definition of n-isometry,

T ∗nTnT ∗T−
(n
1

)
T ∗n−1Tn−1T ∗T+...+(−1)n−2

(n
n−2

)
T ∗2T 2T ∗T+(−1)n−1(nn−1)T ∗TT ∗T+(−1)nT ∗T = 0.

Since T is of class [2QN ] ∩ [3QN, ] we have by Proposition 2.6

T ∗n+1Tn+1−
(n
1

)
T ∗nTn+...+(−1)n−2

(n
n−2

)
T ∗3T 3+(−1)n

(n
n−1

)
(T ∗T )2+(−1)nT ∗T = 0.

(2.16)
Also

T ∗[T ∗nTn −
(n
1

)
T ∗n−1Tn−1 + ...+ (−1)n−1

(n
n−1

)
T ∗T + (−1)nI]T = 0

i.e.

T ∗n+1Tn+1 − (n1 )T ∗nTn + ....+ (−1)n−1
(n
n−1)T ∗2T 2 + (−1)nT ∗T = 0 (2.17)

From (2.16) and (2.17) T 2∗T 2 = (T ∗T )2. Consequently (T ∗)kT k = (T ∗T )k, ∀ k ∈
N, and hence

(T ∗T )n −
(n
1

)
(T ∗T )n−1 + ....+ (−1)n−1

(n
n−1

)
(T ∗T ) + (−1)nI = 0 = (I − T ∗T )n.

This completes the proof.

Definition 2.20. An operator A ∈ L(H) is said to be quasi-invertible if A has zero
kernel and dense range.

Definition 2.21. ([18]) Two operators S and T in L(H) are quasi-similar if there
are quasi-invertible operators A and B in L(H) which satisfy the equations

AS = TA and BT = SB.

If M is a closed subspace of H,H = M ⊕M⊥. If T is in L(H), then T can be
written as a 2× 2 matrix with operators entries,

T =

(
W X
Y Z

)
where W ∈ L(M), X ∈ L(M⊥,M), Y ∈ L(M,M⊥), and Z ∈ L(M⊥) (cf.
Conway [6]).

Proposition 2.22. If S and T are quasi-similar n-power quasi-normal operators in
L(H) such that N(S) = N(T ),N(T ) and N(S) are reducing respectively for T and
S, then S1 = S|N(S)⊥ and T1 = T |N(T )⊥ are quasi-similar n-power quasi-normal
operators.

Proof. Since S and T are quasi-similar, there exists quasi-invertible operators
A and B such that AS = TA and SB = BT. the N(S) is invariant under both
A and B . Thus the matrices of S, T,A and B with respect to decomposition
H = N(S)⊕N(S)⊥ are(

S1 O
O O

)
,

(
T1 O
O O

)
,

(
A1 O
A2 A3

)
,

(
B1 O
B2 B3

)
respectively. It is easy to verify that the ranges of A1 and B1 are dense in N(S)⊥.
We now show that N(A1) = N(B1) = {0}.
Suppose that x ∈ N(A1). Then TA(x ⊕ 0) = 0. The equation AS = TA implies
that x ∈ N(S1). This implies that x = 0, and so N(A1) = {0}. Likewise N(B1) =
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{0}. Therefore A1 and B1 are quasi-invertible operators on N(S)⊥ and equations
AS = TA and SB = TB imply that A1S1 = T1A1 and S1B1 = B1T1. Hence S1

and T1 are quasi-similar. By a similar way as in [10, Proposition 2.1.(iv)] we can
see that the operators S1 and T1 are n-power quasi-normal.

3. THE (Zn) -CLASS OPERATORS

In this section we consider the class (Znα) of operators T satisfies

|TnT ∗T − T ∗TTn|α ≤ c2α(T − λI)∗n(T − λI)n, for all λ ∈ C

and for a positive α. The motivation is due to S. Mecheri [13] who considered the
class of operators T satisfying

|TT ∗ − T ∗T |α ≤ c2α(T − λI)∗(T − λI)

and A. Uchiyama and T. Yoshino [19] who discussed the class of operators T sat-
isfying

|TT ∗ − T ∗T |α ≤ c2α(T − λI)(T − λI)∗.

Definition 3.1. For T ∈ L(H) we say that T belongs to the class (Znα) for some
α ≥ 1 if there is a positive number cα such that

|TnT ∗T − T ∗Tn+1|α ≤ c2α(T − λI)∗n(T − λI)n for all λ ∈ C,

or equivalently, if there is a positive number cα such that

‖|TnT ∗T − T ∗TTn|α2 x‖ ≤ cα‖(T − λI)nx‖,
for all x in H and λ ∈ C. Also, let

Zn =
⋃
α≥1

Znα.

Remark. An operator T of class [nQN ], it is of class (Zn).

In the following examples we give an example of an operator not in the classes
Zn ,and an operator of these classes, which are not of class [nQN ].

Example 3.2. If f is a sequence of complex numbers, f = 〈f(0), f(1), f(2), ... 〉T .

The p-Cesáro operators Cp acting on the Hilbert space l2 of square-summable com-
plex sequences f is defined by

(Cpf)(k) =
1

(k + 1)p

k∑
i=1

f(i) for fixed real p > 1 and k = 0, 1, 2, ....

These operators was studied extensively in [16] where it was shown, that these op-

erators are bounded and (C∗pf)(k) =

∞∑
i=k

1

(i+ 1)p
f(i).

In matrix form, we have

Cp =


1 0 0 . . .

( 1
2 )p ( 1

2 )p 0 . . .
( 1
3 )p ( 1

3 )p ( 1
3 )p . . .

...
...

...
. . .
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We consider the sequence f defined as follows

f(0) = 1 and f(k) =

k∏
j=1

jp

(1 + j)p − 1
for k ≥ 1.

In [16] it is verified that f ∈ l2 , is eigenvector for Cp associated with eigenvalue 1,
so f ∈ N(Cp − I), but f /∈ N(C∗p − I). It follows that ‖(Cp − I)nf)‖ = 0.

On the other hand, we have

(CnpC
∗
pCp − C∗pCpCnp )f = (Cnp − I)C∗pf 6= 0.

Hence, Cp is a bounded operator but not of classes Zn.
Example 3.3. Let T be a weighted shift operator on l2 with weights α1 = 2, αk = 1
for all k ≥ 2. That is

Tα(x1, x2, x3, .....) = (0, α1x1, α2x2, ...) and T ∗(x1, x2, ...) = (α1x2, α2x3, ...).

A simple computation shows that

(TnT ∗T − T ∗TTn)(x) = (0, 0, ..., 0, 6x1, 0, 0, ...)

with 6x1 at the (n+ 1)th place.
Morover

(T ∗nT ∗T−T ∗TT ∗n)(x) = (−6xn+1, 0, 0, ...) and |TnT ∗T−T ∗TTn|2x = (−36x1, 0, 0, ...).

Therefore T is not of class [nQN ] and however T is of class Zn4 ⊆ Zn.

Lemma 3.4. For each α, β such as 1 ≤ α ≤ β, we have Znα ⊆ Znβ .
Proof.

|TnT ∗T − T ∗Tn+1|β = |TnT ∗T − T ∗Tn+1|α2 |TnT ∗T − T ∗Tn+1|β−α|TnT ∗T − T ∗Tn+1|α2

≤ ‖TnT ∗T − T ∗Tn+1‖β−α|TnT ∗T − T ∗Tn+1|α

≤ (2‖T‖n+2)β−αc2α(T − λI)∗n(T − λI)n

= c2β(T − λI)∗n(T − λI)n

where
C2
β = (2‖T‖n+2)β−αc2α.

There exists an Hilbert space H◦: H ⊂ H◦, and an isometric *-homomorphism
preserving order , i.e, for all T, S ∈ L(H) and λ, µ ∈ C, we have

Proposition 3.5. ([6],[13] Berberian technique) Let H be a complex Hilbert space.
Then there exists a Hilbert space H◦ ⊃ H and a map

Φ : L(H)→ L(H◦) : T 7−→ T ◦

satisfying: Φ is an *-isometric isomorphism preserving the order such that

1. Φ(T ∗) = Φ(T )∗.
2. Φ(λT + µS) = λΦ(T ) + µΦ(S).
3. Φ(IH) = IH◦ .
4. Φ(TS) = Φ(T )Φ(S).
5. ‖Φ(T )‖ = ‖T‖.
6. Φ(T ) ≤ Φ(S) if T ≤ S.
7. σ(Φ(T )) = σ(T ), σa(T ) = σa(Φ(T )) = σp(Φ(T )).
8. If T is a positive operator, then Φ(Tα) = |Φ(T )|α for all α > 0.
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Lemma 3.6. If an operator T is of class [nQN ], then Φ(T ) is of class [nQN ].

Lemma 3.7. If an operator T is of class Zn, then Φ(T ) is of class Zn.

Proof. Since T is of class Zn, there exists α ≥ 1 and cα > 0 such that

|TnT ∗T − T ∗Tn+1|α ≤ c2α(T − λ)∗n(T − λI)n for all λ ∈ C.

It follows from the properties of the map Φ that

Φ(|TnT ∗T − T ∗Tn+1|α) ≤ Φ(c2α(T − λ)∗n(T − λI)n) for all λ ∈ C.

By the condition 8. above we have

Φ(|TnT ∗T − T ∗Tn+11|α) = |Φ(|TnT ∗T − T ∗Tn+1|)|α, for all α > 0.

Therefore

|Φ(T )nΦ(T ∗)Φ(T )− Φ(T ∗)Φ(T )n+1| ≤ Φ(c2α(T − λ)∗n(T − λI)n) for all λ ∈ C.

Hence Φ(T ) is of class Zn.

Proposition 3.8. Let T be a class Zn operator and assume that there exists a
subspace M that reduces T , then T |M is of class Zn operator.

Proof. Since T is of class Zn, there exists an integer p ≥ 1 and cp > 0 such that

‖|TnT ∗T − T ∗Tn+1|2
p−1

x‖ ≤ c2p‖(T − λI)nx‖, for all x ∈ H, for all λ ∈ C.

M reduces T , T can be written respect to the composition H = M⊕M⊥ as follows:

T =

(
A O
O B

)
,

By a simple calculation we get

TnT ∗T − T ∗Tn+1 =

(
AnA∗A−A∗An+1 O

O BnB∗B −B∗Bn+1

)
By the uniqueness of the square root, we obtain

|TnT ∗T − T ∗Tn+1| =
(
|AnA∗A−A∗An+1| O

O |BnB∗B −B∗Bn+1|

)
.

Now by iteration to the order 2p, it results that

|TnT ∗T−T ∗Tn+1|2
p−1

=

(
|AnA∗A−A∗An+1|2p−1

0

0 |BnB∗B −B∗Bn+1|2p−1

)
.

Therefore for all x ∈M, we have

‖|TnT ∗T−T ∗Tn+1|2
p−1

x‖ = ‖|AnA∗A−A∗An+1|2
p−1

x‖ ≤ c2p‖(T−λI)x‖ = ‖(A−λI)nx‖.

Hence A is of class Zn2p ⊂ Zn.

Theorem 3.9. Let T of class Z1.

(1) If λ ∈ σp(T ), λ 6= 0, then λ ∈ σp(T ∗), furthermore if λ 6= µ, then Eλ (the
proper subspace associated with λ) is orthogonal to Eµ.

(2) If λ ∈ σa(T ), then λ ∈ σa(T ∗).
(3) TT ∗T − T ∗T 2 is not invertible.

Proof.
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(1) If T ∈ Z1, then T ∈ Z1
α for some α ≥ 1 and there exists a positive constant

cα such that

|TT ∗T − T ∗T 2|α ≤ cα(T − λI)∗(T − λI) for all λ ∈ C.

As Tx = λx implies |TT ∗T − T ∗T 2|α2 x = 0 and (TT ∗ − T ∗T )x = 0 and
hence

‖(T − λ)∗x‖ = ‖(T − λ)x‖

λ〈x |y〉 = 〈λx |y〉 = 〈Tx |y〉 = 〈x |T ∗y〉 = 〈x |µy〉 = µ〈x |y〉.

Hence

〈x |y〉 = 0.

(2) Let λ ∈ σa(T ) from the condition 7. above, we have

σa(T ) = σa(Φ(T )) = σp(φ(T )).

Therefore λ ∈ σp(φ(T )). By applying Lemma 3.7 and the above condition
1., we get

λ ∈ σp(Φ(T )∗) = σp(Φ(T ∗)).

(3) Let T ∈ Z1. then there exists an integer p ≥ 1 and cp > 0 such that

‖|TT ∗T − T ∗T 2|2
p−1

x‖ ≤ c2p‖(T − λI)x‖2 for all x ∈ H and for all λ ∈ C.

It is know that σa(T ) 6= ∅. If λ ∈ σa(T ), then there exists a normed
sequence (xm) in H such that ‖(T − λI)xm‖ −→ 0 as m −→∞. Then

(TT ∗T − T ∗T 2)xm −→ 0 as m −→∞

and so, (TT ∗T − T ∗T 2) is not invertible.
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