A QUADRATIC TYPE FUNCTIONAL EQUATION

(DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

GHADIR SADEGHI

Abstract

In this paper, the solution and the Hyers-Ulam stability of the following quadratic type functional equation $$
\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(x_{1}+\varepsilon_{j} x_{i}\right)=2(k-1) f\left(x_{1}\right)+2 \sum_{i=2}^{k} f\left(x_{i}\right)
$$

is investigated.

1. Introduction and preliminaries

A classical question in the theory of functional equations is the following: "When is it true that a function which approximately satisfies a functional equation \mathcal{E} must be close to an exact solution of \mathcal{E} ?" If there exists an affirmative answer, we say that the equation \mathcal{E} is stable [9]. During the last decades several stability problems for various functional equations have been investigated by numerous mathematicians. We refer the reader to the survey articles [10, 2, 21] and monographs [11, 12, 8] and references therein.

Let \mathcal{X} and \mathcal{Y} be normed spaces. A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfying the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \quad(x, y \in \mathcal{X}) \tag{1.1}
\end{equation*}
$$

is called the quadratic functional equation. It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such that $f(x)=B(x, x)$ for all $x \in \mathcal{X}$; see [9. The biadditive function B is given by

$$
B(x, x)=\frac{1}{4}(f(x+y)-f(x-y)) .
$$

The Hyers-Ulam stability of the quadratic equation (1.1) was proved by Skof [22]. Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain \mathcal{X} is replaced by an abelian group. Furthermore, Czerwik [7] deal with stability problem of the quadratic functional equation 1.1 in the spirit of Hyers-Ulam-

[^0]Rassias. Also, Jung [13] proved the stability of (1.1) on a restricted domain. For more information on the stability of the quadratic equation, we refer the reader to [2, 3, 16, 4, 14].

Theorem 1.1. (Czerwik) Let $\varepsilon \geq 0$ be fixed. If a mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \varepsilon \quad(x \in \mathcal{X}) \tag{1.2}
\end{equation*}
$$

then there exists a unique quadratic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{2} \varepsilon \quad(x \in \mathcal{X})
$$

Moreover, if f is measurable or if $f(t x)$ is continuous in t for each fixed $x \in \mathcal{X}$, then $Q(t x)=t^{2} Q(t x)$ for all $x \in \mathcal{X}$ and $t \in \mathbb{R}$.

The Hyers-Ulam stability of equation (1.1) on a certain restricted domain was investigated by Jung [13] in the following theorem,

Theorem 1.2. (Jung) Let $d>0$ and $\varepsilon \geq 0$ be given. Assume that a mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies the inequality (1.2) for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geq d$. Then there exists a unique quadratic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{7}{2} \varepsilon \quad(x \in \mathcal{X}) \tag{1.3}
\end{equation*}
$$

If, moreover, f is measurable or $f(t x)$ is continuous in t for each fixed $x \in \mathcal{X}$ then $Q(t x)=t^{2} Q(t x)$ for all $x \in \mathcal{X}$ and $t \in \mathbb{R}$.

The quadratic functional equation was used to characterize the inner product spaces [1]. A square norm on an inner product space satisfies the important parallelogram equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

It was shown by Moslehian and Rassias [19] that a normed space $(\mathcal{X},\|\|$.$) is an$ inner product space if and only if for any finite set of vectors $x_{1}, x_{2}, \cdots, x_{k} \in \mathcal{X}$,

$$
\begin{equation*}
\sum_{\varepsilon_{j} \in\{-1,1\}}\left\|x_{1}+\sum_{i=2}^{k} \varepsilon_{j} x_{i}\right\|^{2}=\sum_{\varepsilon_{j} \in\{-1,1\}}\left(\left\|x_{1}\right\|+\sum_{i=2}^{k} \varepsilon_{j}\left\|x_{i}\right\|\right)^{2} \tag{1.4}
\end{equation*}
$$

Motivated by (1.4), we introduce the following functional equation deriving from the quadratic function

$$
\begin{equation*}
\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(x_{1}+\varepsilon_{j} x_{i}\right)=2(k-1) f\left(x_{1}\right)+2 \sum_{i=2}^{k} f\left(x_{i}\right) \tag{1.5}
\end{equation*}
$$

where $k \geq 2$ is a fixed integer. It is easy to see that the function $f(x)=x^{2}$ is a solution of functional equation 1.5 .

2. Solution of the equation 1.5

Theorem 2.1. A mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies the equation 1.5) for all $x_{1}, x_{2}, \cdots, x_{k} \in$ \mathcal{X} if and only if f is quadratic.

Proof. If we replace $x_{1}, x_{2}, \cdots, x_{k}$ in 1.5 by 0 , then we get $f(0)=0$. Putting $x_{3}=x_{4}=\cdots=x_{k}=0$ in the equation 1.5 we see that

$$
f\left(x_{1}-x_{2}\right)+f\left(x_{1}+x_{2}\right)+2(k-2) f\left(x_{1}\right)=2(k-1) f\left(x_{1}\right)+2 f\left(x_{2}\right) .
$$

Hence $f\left(x_{1}-x_{2}\right)+f\left(x_{1}+x_{2}\right)=2 f\left(x_{1}\right)+2 f\left(x_{2}\right)$. The converse is trivial.
Remark. We can prove the theorem above on the punching space $\mathcal{X}-\{0\}$. If we consider $x_{2}=x_{3}=\cdots=x_{k}$, then we observe that

$$
\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(x_{1}+\varepsilon_{j} x_{2}\right)=2(k-1) f\left(x_{1}\right)+2 \sum_{i=2}^{k} f\left(x_{2}\right)
$$

whence

$$
(k-1)\left(f\left(x_{1}-x_{2}\right)+f\left(x_{1}+x_{2}\right)\right)=2(k-1) f\left(x_{1}\right)+2(k-1) f\left(x_{2}\right) .
$$

Hence f is quadratic.

3. Stability Results

Throughout this section, let \mathcal{X} and \mathcal{Y} be normed and Banach spaces also, we prove the Hyers-Ulam stability of equation (1.5). From now on, we use the following abbreviation

$$
\begin{equation*}
\mathfrak{D} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(x_{1}+\varepsilon_{j} x_{i}\right)-2(k-1) f\left(x_{1}\right)-2 \sum_{i=2}^{k} f\left(x_{i}\right) . \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let $\varepsilon \geq 0$ be fixed. If a mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ with $f(0)=0$ satisfies

$$
\begin{equation*}
\left\|\mathfrak{D} f\left(x_{1}, x_{2}, \cdots x_{k}\right)\right\| \leq \varepsilon \tag{3.2}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots x_{k} \in \mathcal{X}$, then there exists a unique quadratic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{2} \varepsilon
$$

Moreover, if f is measurable or if $f(t x)$ is continuous in t for each fixed $x \in \mathcal{X}$, then $Q(t x)=t^{2} Q(t x)$ for all $x \in \mathcal{X}$ and $t \in \mathbb{R}$.

Proof. It is enough to put $x_{3}=x_{4}=\cdots x_{k}=0$ in 3.2 and use Theorem 1.1.
By using an idea from the paper [13], we will prove the Hyers-Ulam stability of equation 1.5 on a restricted domain.

Theorem 3.2. Let $d>0$ and $\varepsilon \geq 0$ be given. Suppose that a mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies the inequality (3.2) for all $x_{1}, x_{2}, \cdots x_{k} \in \mathcal{X}$ with $\left\|x_{1}\right\|+\left\|x_{2}\right\|+\cdots+\left\|x_{k}\right\| \geq$ d. Then there exists a unique quadratic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{3+2 k}{2} \varepsilon \tag{3.3}
\end{equation*}
$$

for all $x \in \mathcal{X}$. Moreover, if f is measurable or if $f(t x)$ is continuous in t for each fixed $x \in \mathcal{X}$, then $Q(t x)=t^{2} Q(t x)$ for all $x \in \mathcal{X}$ and $t \in \mathbb{R}$.

Proof. Assume $\left\|x_{1}\right\|+\left\|x_{2}\right\|+\cdots+\left\|x_{k}\right\|<d$. If $x_{1}=x_{2}=\cdots=x_{k}=0$, then we chose a $t \in \mathcal{X}$ with $\|t\|=d$. Otherwise, let $t=\left(1+\frac{d}{\left\|x_{i_{0}}\right\|}\right) x_{i_{0}}$, where $\left\|x_{i_{0}}\right\|=\max \left\{\left\|x_{j}\right\|: 1 \leq j \leq k\right\}$. Clearly, we see that

$$
\begin{array}{r}
\left\|x_{1}-t\right\|+\left\|x_{2}+t\right\|+\cdots+\left\|x_{k}+t\right\| \geq d \tag{3.4}\\
\left\|x_{1}+t\right\|+\left\|x_{2}+t\right\|+\cdots+\left\|x_{k}+t\right\| \geq d \\
\left\|x_{1}\right\|+\left\|x_{2}+2 t\right\|+\cdots+\left\|x_{k}+2 t\right\| \geq d \\
\left\|x_{2}+t\right\|+\left\|x_{3}+t\right\|+\cdots+\left\|x_{k}+t\right\|+\|t\| \geq d \\
\left\|x_{1}\right\|+\|t\| \geq d
\end{array}
$$

since $\left\|x_{j}+t\right\| \geq d$ and $\left\|x_{j}+2 t\right\| \geq d$, for $1 \leq j \leq k$.
From (3.2) and (3.4) and the relations

$$
\begin{aligned}
& f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)-2 f\left(x_{1}\right)-2 f\left(x_{2}\right) \\
= & f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}-2 t\right)-2 f\left(x_{1}-t\right)-2 f\left(x_{2}+t\right) \\
+ & f\left(x_{1}+x_{2}+2 t\right)+f\left(x_{1}-x_{2}\right)-2 f\left(x_{1}+t\right)-2 f\left(x_{2}+t\right) \\
- & 2 f\left(x_{2}+2 t\right)-2 f\left(x_{2}\right)+4 f\left(x_{2}+t\right)+4 f(t) \\
- & f\left(x_{1}+x_{2}+2 t\right)-f\left(x_{1}-x_{2}-2 t\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}+2 t\right) \\
+ & 2 f\left(x_{1}+t\right)+2 f\left(x_{1}-t\right)-4 f\left(x_{1}\right)-4 f(t)
\end{aligned}
$$

we get

$$
\begin{aligned}
\left\|\mathfrak{D} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)\right\| & \leq\left\|\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(\alpha_{1}+\varepsilon_{j} \alpha_{i}\right)-2(k-1) f\left(\alpha_{1}\right)-2 \sum_{i=2}^{k} f\left(\alpha_{i}\right)\right\| \\
& +\left\|\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(\beta_{1}+\varepsilon_{j} \beta_{i}\right)-2(k-1) f\left(\beta_{1}\right)-f\left(\beta_{i}\right)\right\| \\
& +2\left\|\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(\gamma_{1}+\varepsilon_{j} \gamma_{i}\right)-2(k-1) f\left(\gamma_{1}\right)-2 \sum_{i=2}^{k} f\left(\gamma_{i}\right)\right\| \\
& +\left\|\sum_{i=2}^{k} \sum_{\varepsilon_{j} \in\{-1,1\}} f\left(\theta_{1}+\varepsilon_{j} \theta_{i}\right)-2(k-1) f\left(\theta_{1}\right)-2 \sum_{i=2}^{k} f\left(\theta_{i}\right)\right\|
\end{aligned}
$$

where

$$
\begin{array}{rlll}
\alpha_{1}=x_{1}-t & , & \alpha_{i}=x_{i}+t, & 2 \leq i \leq k \\
\beta_{1}=x_{1}+t & , & \beta_{i}=x_{i}+t, & 2 \leq i \leq k \\
\gamma_{1}=t & , & \gamma_{i}=x_{i}+t, & 2 \leq i \leq k \\
\theta_{1}=x_{1} & , & \theta_{i}=x_{i}+2 t, \quad 2 \leq i \leq k \\
\eta_{i}=x_{1} & , & \eta_{i+1}=t, & 2 \leq i \leq k
\end{array}
$$

Hence we have

$$
\begin{align*}
\left\|\mathfrak{D} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)\right\| & \leq\left\|\mathfrak{D} f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)\right\|+\left\|\mathfrak{D} f\left(\beta_{1}, \beta_{2}, \cdots, \beta_{k}\right)\right\| \\
& +2\left\|\mathfrak{D} f\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{k}\right)\right\|+\left\|\mathfrak{D} f\left(\theta_{1}, \theta_{2}, \cdots, \theta_{k}\right)\right\| \\
& +2(k-1)\left\|\mathfrak{D} f\left(\eta_{1}, \eta_{2}, \cdots, \eta_{k}\right)\right\| \\
& \leq(3+2 k) \varepsilon \tag{3.5}
\end{align*}
$$

Obviously, inequality (3.2) holds for all $x, y \in \mathcal{X}$. According to (3.5) and Theorem 3.1 there exists a unique quadratic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ which satisfies the inequality (3.3) for all $x_{1}, x_{2}, \cdots, x_{k} \in \mathcal{X}$.

Now we study asymptotic behavior of function equation 1.5 .
Theorem 3.3. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping. Then f is quadratic if and only if for $k \in \mathbb{N}(k \geq 2)$

$$
\begin{equation*}
\left\|\mathfrak{D} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)\right\| \rightarrow 0 \tag{3.6}
\end{equation*}
$$

as $\left\|x_{1}\right\|+\left\|x_{2}\right\|+\cdots\left\|x_{k}\right\| \rightarrow \infty$.
Proof. If f is quadratic then (3.6) evidently holds. Conversely, by using the limits 3.6) we can find for every $n \in \mathbb{N}$ a sequence ε_{n} such that $\left\|\mathfrak{D} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)\right\| \leq \frac{1}{n}$ for all $x_{1}, x_{2}, \cdots, x_{k} \in \mathcal{X}$ with $\left\|x_{1}\right\|+\left\|x_{2}\right\|+\cdots\left\|x_{k}\right\| \geq \varepsilon_{n}$.

By Theorem 3.2 for every $n \in \mathbb{N}$ there exists a unique quadratic mapping Q_{n} such that

$$
\begin{equation*}
\left\|f(x)-Q_{n}(x)\right\| \leq \frac{3+2 k}{2 n} \tag{3.7}
\end{equation*}
$$

for all $x \in \mathcal{X}$. Since $\left\|f(x)-Q_{1}(x)\right\| \leq \frac{3+2 k}{2}$ and $\left\|f(x)-Q_{n}(x)\right\| \leq \frac{3+2 k}{2 n} \leq \frac{3+2 k}{2}$, by the uniqueness of Q_{1} we conclude that $Q_{n}=Q_{1}$ for all $n \in \mathcal{N}$. Now, by tending n to the infinity in (3.7) we deduce that $f=Q_{1}$. Therefore f is quadratic.

4. STABILITY ON BOUNDED DOMAINS

Throughout this section, we denote by $B_{r}(0)$ the closed ball of radius r around the origin and $B_{r}=B_{r}(0)-\{0\}$. In this section we used some ideas from the paper's Moslehian et al [18].

Theorem 4.1. Let \mathcal{X} and \mathcal{Y} be normed and Banach spaces $p>2, r>0, \varphi: X^{k} \rightarrow$ $[0, \infty)(k \geq 2)$ be a function such that $\varphi\left(\frac{x_{1}}{2}, \frac{x_{2}}{2}, \cdots, \frac{x_{k}}{2}\right) \leq \frac{1}{2^{p}} \varphi\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ for all
$x_{1}, x_{2}, \cdots, x_{k} \in B_{r}$. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|\mathfrak{D} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)\right\| \leq \varphi\left(x_{1}, x_{2}, \cdots, x_{k}\right) \tag{4.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{K} \in B_{r}$ with $x_{i} \pm x_{j} \in B_{r}$ for $1 \leq i, j \leq k$. Then there exists a unique quadratic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{\left(2^{p}-4\right)(k-1)} \varphi(x, x, \cdots, x) \tag{4.2}
\end{equation*}
$$

where $x \in B_{r}$.
Proof. Let $x_{1}, x_{2}, \cdots, x_{K} \in B_{r}$. If we consider $x_{2}=x_{3}=\cdots=x_{k}$ in 4.1, then we see that

$$
\begin{equation*}
\left\|f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)-2 f\left(x_{1}\right)-2 f\left(x_{2}\right)\right\| \leq \frac{1}{k-1} \varphi\left(x_{1}, x_{2}, \cdots, x_{2}\right) \tag{4.3}
\end{equation*}
$$

Replacing x_{1}, x_{2} in 4.3 by $\frac{x}{2}$, we get

$$
\begin{equation*}
\left\|f(x)-4 f\left(\frac{x}{2}\right)\right\| \leq \frac{1}{k-1} \varphi\left(\frac{x}{2}, \frac{x}{2}, \cdots, \frac{x}{2}\right) . \tag{4.4}
\end{equation*}
$$

Replacing x by $\frac{x}{2^{n}} \in B_{r}$ and multiplying with 4^{n} in 4.4, we obtain

$$
\begin{equation*}
\left\|4^{n} f\left(\frac{x}{2^{n}}\right)-4^{n+1} f\left(\frac{x}{2^{n+1}}\right)\right\| \leq \frac{4^{n}}{k-1} \varphi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}, \cdots, \frac{x}{2^{n+1}}\right) \tag{4.5}
\end{equation*}
$$

It follows from 4.5 that

$$
\begin{align*}
\left\|4^{n} f\left(\frac{x}{2^{n}}\right)-4^{n+m} f\left(\frac{x}{2^{n+m}}\right)\right\| & \leq \frac{1}{k-1} \sum_{i=1}^{m} 4^{n+i-1} \varphi\left(\frac{x}{2^{n+i}}, \frac{x}{2^{n+i}}, \cdots, \frac{x}{2^{n+i}}\right) \\
& \leq \frac{2^{2(n-1)}}{2^{p n}(k-1)} \varphi(x, x, \cdots, x) \sum_{i=1}^{m} \frac{1}{2^{(p-2) i}} . \tag{4.6}
\end{align*}
$$

It follows that $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is Cauchy and so is convergent. Therefore we see that a mapping

$$
\widehat{Q}(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right) \quad\left(x \in B_{r}\right)
$$

satisfies

$$
\|f(x)-\widehat{Q}(x)\| \leq \frac{1}{\left(2^{p}-4\right)(k-1)} \varphi(x, x, \cdots, x)
$$

and $\widehat{Q}(0)=0$, when taking the limit $m \rightarrow \infty$ in with $n=0$.
Next fix $x \in B_{r}$. Because of $\frac{x}{2} \in B_{r}$, we have

$$
4 \widehat{Q}\left(\frac{x}{2}\right)=\lim _{n \rightarrow \infty} 4^{n+1} f\left(\frac{x}{2^{n+1}}\right)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)=\widehat{Q}(x) .
$$

Therefore $4^{n+m} \widehat{Q}\left(\frac{x}{2^{n+m}}\right)=\widehat{Q}(x)$ and so the mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ given by $Q(x):=$ $4^{n} \widehat{Q}\left(\frac{x}{2^{n}}\right)$, where n is least non-negative integer such that $\frac{x}{2^{n}} \in B_{r}$ is well-defined.

It is easy to see that $Q(x)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right) \quad(x \in \mathcal{X})$ and $\left.Q\right|_{B_{r}(0)}=\widehat{Q}$.
Now let $x, y \in \mathcal{X}$. There is a large enough n such that $\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{x+y}{2^{n}}, \frac{x-y}{2^{n}} \in B_{r}(0)$. Put $x_{1}=\frac{x}{2^{n}}$ and $x_{2}=\frac{y}{2^{n}}$ in 4.3) and multiplying both sides with 4^{n} to obtain

$$
\begin{aligned}
\left\|4^{n} f\left(\frac{x+y}{n}\right)+4^{n} f\left(\frac{x-y}{2^{n}}\right)-4^{n} 2 f\left(\frac{x}{2^{n}}\right)-4^{n} 2 f\left(\frac{y}{2^{n}}\right)\right\| & \leq \frac{4^{n}}{k-1} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \cdots, \frac{y}{2^{n}}\right) \\
& \leq \frac{4^{n}}{2^{n p}(k-1)} \varphi(x, y, y, \cdots, y)
\end{aligned}
$$

whence, by taking the limit as $n \rightarrow \infty$, we get $Q(x+y)+Q(x-y)=2 q(x)+2 Q(y)$. Hence Q is quadratic. Uniqueness of Q can be proved by using the strategy used in the proof of Theorem 3.2 .

Corollary 4.2. Let \mathcal{X} and \mathcal{Y} be normed and Banach spaces $p>2, r>0, \theta>0$. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|\mathfrak{D} f\left(x_{1}, x_{2}, \cdots, x_{k}\right)\right\| \leq \theta\left\|x_{1}\right\|^{\frac{p}{k}}\left\|x_{2}\right\|^{\frac{p}{k}} \cdots\left\|x_{k}\right\|^{\frac{p}{k}} \tag{4.7}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{k} \in B_{r}$ with $x_{i} \pm x_{j} \in B_{r}$ for $2 \leq i, j \leq k$. Then there exists a unique quadratic mapping $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\theta r^{p}}{\left(2^{p}-4\right)(k-1)} \tag{4.8}
\end{equation*}
$$

where $x \in B_{r}$.

Proof. Apply Theorem 4.1 with $\varphi\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\theta\left\|x_{1}\right\|^{\frac{p}{k}}\left\|x_{2}\right\|^{\frac{p}{k}} \cdots\left\|x_{k}\right\|^{\frac{p}{k}}$.

References

[1] D. Amir, Characterizations of inner product spaces, Birkhäuesr, Basel, 1986.
[2] J.-H. Bae and I.-S. Chang, On the Ulam stability problem of a quadratic functional equation, Korean. J. Comput. Appl. Math. (Series A) 8 (2001), 561-567.
[3] J.-H. Bae and Y.-S. Jung, THE Hyers-Ulam stability of the quadratic functional equations on abelian groups, Bull. Korean Math. Soc. 39 (2002), no.2, 199-209.
[4] B. Belaid, E. Elhoucien and Th. M. Rassias, On the genaralized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2007), 247-262.
[5] L. Cădariu and V. Radu, Fixed points and the stability of Jensens functional equation, J. Inequal. Pure Appl. Math. 4 (2007), no. 1, article 4, 7 pp.
[6] P.W. Cholewa, Remarks on the stability of functional equatoins, Aeqations Math. 27 (1992), 76-86.
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[8] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003.
[9] G.L. Forti, Hyers-Ulam stability of functional equations in several variables Aequationes Math. 50 (1995), no. 1-2, 143-190.
[10] D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[11] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[12] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[13] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic proprty, J. Math. Anal. Appl. 222 (1998), 126-137.
[14] S.-M. Jung, Z.-H. Lee, A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution, Fixed Point Theory and Applications, Volume 2008, Article ID 732086, 11 pages.
[15] S. M. Jung, M. S. Moslehian and P. K. Sahoo, Stability of a generalized Jensen equation on restricted domain, J. Math. Ineq. 4 (2010), 191-206.
[16] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. 37 (2006), no. 3, 361-376.
[17] M.S. Moslehian, On the orthogonal stability of the Pexiderize quadratic equation, J. Differ. Equations. Appl. 11 (2005), 999-1004.
[18] M.S. Moslehian, K. Nikodem, D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl. 355 (2009), 717-724.
[19] M.S. Moslehia, J.M. Rassias, Characterizations of inner product spaces, Kochi Math. J. (to appear).
[20] M.S. Moslehian and Gh. Sadeghi, Stability of linear mappings in quasi-Banach modules, Math. Inequal. Appl. 11 (2008), no. 3, 549-557.
[21] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
[22] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat.Fis. Milano. 53 (1983), 113-129.

Ghadir Sadeghi
Department of Mathematics and computer sciences, Sabzevar Tarbiat Moallem University, P.O. Box 397, Sabzevar, Iran

E-mail address: ghadir54@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 39B22, 39B82.
 Key words and phrases. Hyers-Ulam stability; quadratic equation; normed space.
 © 2010 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted August 1, 2010. Published November 15, 2010.

