BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 2, Issue 3(2010), Pages 27-31.

ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

WAAD SULAIMAN

ABSTRACT. In this paper generalization as well as improvement to the Sarigöl's result concerning local property of factored Fourier series has been achieved.

1. INTRODUCTION

Let $\sum a_n$ be a given series with partial sums (s_n) , and let (p_n) be a sequence of positive numbers such that

$$P_n = p_0 + \ldots + p_n \to \infty \text{ as } n \to \infty.$$

The sequence to sequence transformation

$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (T_n) of the (\overline{N}, p_n) means of the sequence (s_n) generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|\overline{N}, p_n, \theta|_k$, $k \ge 1$ if (see [8])

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \left| T_n - T_{n-1} \right|^k < \infty.$$
(1.1)

In the special case when θ_n is equal to P_n/p_n , *n*, we obtain $|\overline{N}, p_n|_k$, $|R, p_n|_k$ summabilities respectively.

Let f be a function with period 2π , integrable (L) over $(-\pi, \pi)$. Without loss of generality, we may assume that the constant term of the Fourier series of f is zero, that is

$$\int_{-\pi}^{\pi} f(t)dt = 0,$$

$$f(t) \approx \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) \equiv \sum_{n=1}^{\infty} C_n(t).$$
(1.2)

The sequence (λ_n) is said to be convex if $\Delta^2 \lambda_n \ge 0$ for every positive integer n, where $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

 $^{2000\} Mathematics\ Subject\ Classification.\ 40G99,\ 43A24,\ 42B24.$

Key words and phrases. Absolute summability; Fourier series; Local property.

^{©2010} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted April, 2010. Published Jun, 2010.

W.T. SULAIMAN

Generalizing the results ([1], [2], [5], [6]), Bor [3] has proved the following result **Theorem 1.1.** Let $k \ge 1$ and (p_n) be a sequence satisfying the conditions

$$P_n = O(np_n), \tag{1.3}$$

$$P_n \Delta p_n = O(p_n p_{n+1}). \tag{1.4}$$

If (θ_n) is any sequence of positive constants such that

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{v} (\lambda_v)^k = O(1),$$
(1.5)

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \Delta \lambda_v = O(1), \tag{1.6}$$

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{v} (\lambda_{v+1})^k = O(1),$$
(1.7)

and

$$\sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O\left(\left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{P_v}\right),\tag{1.8}$$

then the summability $|\overline{N}, p_n, \theta_n|_k$ of the series $\sum_{n=1}^{\infty} C_n(t)\lambda_n P_n/np_n$ at a point can be ensured by local property, where (λ_n) is convex sequence such that $\sum n^{-1}\lambda_n$ is convergent.

In his roll, Sarıgöl [7] generalized the above Bor's result by giving the following **Theorem 1.2.** Let $k \ge 1$ and (p_n) be a sequence satisfying the conditions

$$\Delta \left(P_n / n p_n \right) = O(1/n). \tag{1.9}$$

Let (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent. If (θ_n) is any sequence of positive constants such that

$$\sum_{v=1}^{m} \theta_v^{k-1} \frac{P_v}{v^k p_v} \Delta \lambda_v < \infty, \tag{1.10}$$

$$\sum_{v=1}^{m} \theta_v^{k-1} \left(\frac{\lambda_v}{v}\right)^k < \infty, \tag{1.11}$$

and

$$\sum_{n=\nu+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O\left(\left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{P_v}\right),\tag{1.12}$$

then the summability $|\overline{N}, p_n, \theta_n|_k$ of the series $\sum_{n=1}^{\infty} C_n(t)\lambda_n P_n/np_n$ at a point can be ensured by local property of f.

The following Lemmas are needed for our aim

28

Lemma 1.3. [5]. If the sequence (p_n) satisfies the conditions

$$P_n = O(np_n), \tag{1.13}$$

$$P_n \Delta p_n = O(p_n p_{n+1}) \tag{1.14}$$

then

$$\Delta \left(P_n / n p_n \right) = O(1/n). \tag{1.15}$$

Lemma 1.4. [4]. If (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent, then (λ_n) is non-negative and decreasing and $\Delta\lambda_n \to 0$ as $n \to \infty$.

2. Main Results

The coming result covers all the results mentioned in the references

Theorem 2.1. Let $k \ge 1$, and let the sequences (p_n) , (θ_n) , (λ_n) and (φ_n) where $\theta_n > 0$, are all satisfying

$$|\lambda_{n+1}| = O\left(|\lambda_n|\right),\tag{2.1}$$

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \left|\lambda_n\right|^k \left|\varphi_n\right|^k < \infty,$$
(2.2)

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \left| \lambda_n \right|^k \left| \Delta \varphi_n \right|^k < \infty, \tag{2.3}$$

$$\sum_{v=1}^{n-1} \theta_v^{1-1/k} \left| \varphi_v \right| \left(\frac{P_v}{p_v} \right)^{(1/k)-1} \left| \Delta \lambda_v \right| < \infty, \tag{2.4}$$

and

$$\sum_{n=\nu+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O\left(\left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{P_v}\right),\tag{2.5}$$

then the summability $|\overline{N}, p_n, \theta_n|_k$ of the series $\sum_{n=1}^{\infty} C_n(t)\lambda_n\varphi_n$ at a point can be ensured by local property of f.

Proof. Let (T_n) denote the (\overline{N}, p_n) mean of the series $\sum_{n=1}^{\infty} C_n(t)\lambda_n\varphi_n$. Then, we have

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} \lambda_v \varphi_v a_v$$

$$= \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} \left(\sum_{r=1}^v a_v \right) \Delta \left(P_{v-1} \lambda_v \varphi_v \right) + \left(\sum_{v=1}^n a_v \right) \frac{p_n}{P_n} \lambda_n \varphi_n$$

$$= \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} \left(-s_v p_v \lambda_v \varphi_v + s_v P_v \Delta \lambda_v \varphi_v + s_v P_v \lambda_{v+1} \Delta \varphi_v \right) + s_n \frac{p_n}{P_n} \lambda_n \varphi_n$$

$$= T_{n1} + T_{n2} + T_{n3} + T_{n4}.$$

In order to complete the proof, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \left| T_{nr}^k \right| < \infty, \qquad r = 1, 2, 3, 4.$$

Applying Holder's inequality,

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n1}|^k &= \sum_{n=2}^{m+1} \theta_n^{k-1} |s_v p_v \lambda_v \varphi_v|^k \\ &\leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} |s_v|^k |p_v| \lambda_v|^k |\varphi_v|^k \left(\sum_{v=1}^{n-1} \frac{p_v}{P_{n-1}}\right)^{k-1} \\ &= O(1) \sum_{v=1}^m p_v |\lambda_v|^k |\varphi_v|^k \sum_{n=v+1}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}} \\ &= O(1) \sum_{v=1}^m p_v |\lambda_v|^k |\varphi_v|^k \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{P_v} \\ &= O(1) \sum_{v=1}^m \theta_v^{k-1} \left(\frac{p_v}{P_v}\right)^k |\lambda_v|^k |\varphi_v|^k = O(1). \end{split}$$

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} \left| T_{n2} \right|^k &= \sum_{n=2}^{m+1} \theta_n^{k-1} \left| s_v P_v \Delta \lambda_v \varphi_v \right|^k \\ &\leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k \sum_{v=1}^{n-1} \left| s_v \right|^k P_v^k \left| \Delta \lambda_v \right| \left| \varphi_v \right| \theta_v^{(1-1/k)(1-k)} \left(\frac{P_v}{p_v} \right)^{(k-1)(1-1/k)} \\ &\times \left(\sum_{v=1}^{n-1} \theta_v^{1-1/k} \left| \varphi_v \right| \left(\frac{P_v}{p_v} \right)^{(1/k)-1} \left| \Delta \lambda_v \right| \right)^{k-1} \\ &= O(1) \sum_{v=1}^m P_v^k \left| \Delta \lambda_v \right| \left| \varphi_v \right| \theta_v^{(1-1/k)(1-k)} \left(\frac{P_v}{p_v} \right)^{(k-1)(1-1/k)} \sum_{n=v+1}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k \\ &= O(1) \sum_{v=1}^m P_v \left| \Delta \lambda_v \right| \left| \varphi_v \right| \theta_v^{(1-1/k)(1-k)} \left(\frac{P_v}{p_v} \right)^{(k-1)(1-1/k)} \sum_{n=v+1}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \\ &= O(1) \sum_{v=1}^m \left| \Delta \lambda_v \right| \left| \varphi_v \right| \theta_v^{(1-1/k)(1-k)} \left(\frac{P_v}{p_v} \right)^{(k-1)(1-1/k)} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^m \theta_v^{1-1/k} \left| \varphi_v \right| \left(\frac{P_v}{p_v} \right)^{(1/k)-1} \left| \Delta \lambda_v \right| = O(1). \end{split}$$

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} \left| T_{n3} \right|^k &= \sum_{n=2}^{m+1} \theta_n^{k-1} \left| s_v P_v \lambda_{v+1} \Delta \varphi_v \right|^k \\ &\leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \left| s_v \right|^k \frac{P_v^k}{p_v^{k-1}} \left| \lambda_{v+1} \right|^k \left| \Delta \varphi_v \right|^k \left(\sum_{v=1}^{n-1} \frac{p_v}{P_{n-1}} \right)^{k-1} \\ &= O(1) \sum_{v=1}^m \frac{P_v^k}{p_v^{k-1}} \left| \lambda_{v+1} \right|^k \left| \Delta \varphi_v \right|^k \sum_{n=v+1}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \\ &= O(1) \sum_{v=1}^m \frac{P_v^k}{p_v^{k-1}} \left| \lambda_v \right|^k \left| \Delta \varphi_v \right|^k \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{P_v} \\ &= O(1) \sum_{v=1}^m \theta_v^{k-1} \left| \lambda_v \right|^k \left| \Delta \varphi_v \right|^k = O(1). \end{split}$$

$$\sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n4}|^k = \sum_{n=2}^{m+1} \theta_n^{k-1} \left| s_n \frac{p_n}{P_n} \lambda_n \varphi_n \right|^k$$
$$= \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k |\lambda_n|^k |\varphi_n|^k = O(1).$$

Since the behavior of the Fourier series concerns the convergence for a particular value of x depends on the behavior on the function in the immediate neighborhood of this point only, this justifies (1.2) and valid. This completes the proof.

Remark. The result of [7] follows from theorem 2.1 by putting

 $\varphi_n = P_n/np_n, \qquad \Delta \varphi_n = O(1/n).$

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

- S. N. Bhatt, An aspect of local property of |R, log n, 1| summability of the factored Fourier series, Proc. Nat. Inst. India 26 (1968) 69–73.
- [2] H. Bor, Local property of $|N, p_n|_k$ summability of the factored Fourier series, Bull. Inst. Math. Acad. Sinica. **17** (1980) 165–170.
- [3] H. Bor, On the local property of Fourier series. Bull. Math. Anal. Appl. 1 (2009), 15–21.
- [4] H. C. Chow, On the summability factors of infinite series, J. London Math. Soc. 16 (1941) 215-220.
- [5] K. Matsumoto, Local property of the summability $|R, \lambda_n, 1|$, Thoku Math. J. 2 (8) (1956) 114-124.
- [6] K. N. Mishra, Multipliers for |N, p_n| summability of Fourier series, Bull. Inst. Math. Acad. Sinica. 14 (1986) 431-438.
- [7] M.A. Sarigöl, On the local property of the factored Fourier series, Bull. Math. Anal. Appl. 1 (2009), 49-54.
- [8] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992) 313-317.

WAAD SULAIMAN, DEPARTMENT OF COMPUTER ENGINEERING, COLLEGE OF ENGINEERING, UNIVERSITY OF MOSUL, IRAQ

 $E\text{-}mail\ address:$ waadsulaiman@hotmail.com