
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 2, Issue 3(2010), Pages 27-31.

ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

WAAD SULAIMAN

Abstract. In this paper generalization as well as improvement to the Sarigöl’s
result concerning local property of factored Fourier series has been achieved.

1. Introduction

Let
∑

an be a given series with partial sums (sn), and let (pn) be a sequence of
positive numbers such that

Pn = p0 + ...+ pn → ∞ as n → ∞.

The sequence to sequence transformation

Tn =
1

Pn

n
∑

v=0

pvsv

defines the sequence (Tn) of the (N, pn) means of the sequence (sn) generated by
the sequence of coefficients (pn).The series

∑

an is said to be summable
∣

∣N, pn, �
∣

∣

k
,

k ≥ 1 if (see [8])
∞
∑

n=1

�k−1
n ∣Tn − Tn−1∣

k
< ∞. (1.1)

In the special case when �n is equal to Pn/pn, n,we obtain
∣

∣N, pn
∣

∣

k
, ∣R, pn∣k summa-

bilities respectively.
Let f be a function with period 2�, integrable (L) over (−�, �). Without loss of

generality, we may assume that the constant term of the Fourier series of f is zero,
that is

�
∫

−�

f(t)dt = 0,

f(t) ≈

∞
∑

n=1

(an cosnt+ bn sinnt) ≡

∞
∑

n=1

Cn(t). (1.2)

The sequence (�n) is said to be convex if Δ2�n ≥ 0 for every positive integer n,
where Δ�n = �n − �n+1.
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Generalizing the results( [1], [2], [5], [6]), Bor [3] has proved the following result

Theorem 1.1. Let k ≥ 1 and (pn) be a sequence satisfying the conditions

Pn = O(npn), (1.3)

PnΔpn = O(pnpn+1). (1.4)

If (�n) is any sequence of positive constants such that

m
∑

v=1

(

�vpv
Pv

)k−1
1

v
(�v)

k = O(1), (1.5)

m
∑

v=1

(

�vpv
Pv

)k−1

Δ�v = O(1), (1.6)

m
∑

v=1

(

�vpv
Pv

)k−1
1

v
(�v+1)

k = O(1), (1.7)

and
m+1
∑

n=v+1

(

�npn
Pn

)k−1
pn

PnPn−1
= O

(

(

�vpv
Pv

)k−1
1

Pv

)

, (1.8)

then the summability
∣

∣N, pn, �n
∣

∣

k
of the series

∞
∑

n=1
Cn(t)�nPn/npn at a point can

be ensured by local property, where (�n) is convex sequence such that
∑

n−1�n is

convergent.

In his roll, Sarıgöl [7] generalized the above Bor’s result by giving the following

Theorem 1.2. Let k ≥ 1 and (pn) be a sequence satisfying the conditions

Δ(Pn/npn) = O(1/n). (1.9)

Let (�n) is a convex sequence such that
∑

n−1�n is convergent. If (�n) is any

sequence of positive constants such that

m
∑

v=1

�k−1
v

Pv

vkpv
Δ�v < ∞, (1.10)

m
∑

v=1

�k−1
v

(

�v

v

)k

< ∞, (1.11)

and
m+1
∑

n=v+1

(

�npn
Pn

)k−1
pn

PnPn−1
= O

(

(

�vpv
Pv

)k−1
1

Pv

)

, (1.12)

then the summability
∣

∣N, pn, �n
∣

∣

k
of the series

∞
∑

n=1
Cn(t)�nPn/npn at a point can

be ensured by local property of f.

The following Lemmas are needed for our aim
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Lemma 1.3. [5]. If the sequence (pn) satisfies the conditions

Pn = O(npn), (1.13)

PnΔpn = O(pnpn+1) (1.14)

then

Δ(Pn/npn) = O(1/n). (1.15)

Lemma 1.4. [4]. If (�n) is a convex sequence such that
∑

n−1�n is convergent,

then (�n) is non-negative and decreasing and Δ�n → 0 as n → ∞.

2. Main Results

The coming result covers all the results mentioned in the references

Theorem 2.1. Let k ≥ 1, and let the sequences (pn), (�n), (�n) and ('n) where

�n > 0, are all satisfying

∣�n+1∣ = O (∣�n∣) , (2.1)
∞
∑

n=1

�k−1
n

(

pn
Pn

)k

∣�n∣
k ∣'n∣

k < ∞, (2.2)

∞
∑

n=1

�k−1
n ∣�n∣

k
∣Δ'n∣

k
< ∞, (2.3)

n−1
∑

v=1

�1−1/k
v ∣'v∣

(

Pv

pv

)(1/k)−1

∣Δ�v∣ < ∞, (2.4)

and
m+1
∑

n=v+1

(

�npn
Pn

)k−1
pn

PnPn−1
= O

(

(

�vpv
Pv

)k−1
1

Pv

)

, (2.5)

then the summability
∣

∣N, pn, �n
∣

∣

k
of the series

∞
∑

n=1
Cn(t)�n'n at a point can be

ensured by local property of f.

Proof. Let (Tn) denote the (N, pn) mean of the series
∞
∑

n=1
Cn(t)�n'n. Then, we

have

Tn − Tn−1 =
pn

PnPn−1

n
∑

v=1

Pv−1�v'vav

=
pn

PnPn−1

n−1
∑

v=1

(

v
∑

r=1

av

)

Δ(Pv−1�v'v) +

(

n
∑

v=1

av

)

pn
Pn

�n'n

=
pn

PnPn−1

n−1
∑

v=1

(−svpv�v'v + svPvΔ�v'v + svPv�v+1Δ'v) + sn
pn
Pn

�n'n

= Tn1 + Tn2 + Tn3 + Tn4.

In order to complete the proof, by Minkowski′s inequality, it is sufficient to show
that

∞
∑

n=1

�k−1
n

∣

∣T k
nr

∣

∣ < ∞, r = 1, 2, 3, 4.
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Applying Holder’s inequality,

m+1
∑

n=2
�k−1
n ∣Tn1∣

k
=

m+1
∑

n=2
�k−1
n ∣svpv�v'v∣

k

≤
m+1
∑

n=2
�k−1
n

(

pn

Pn

)k
1

Pn−1

n−1
∑

v=1
∣sv∣

k
pv ∣�v∣

k
∣'v∣

k

(

n−1
∑

v=1

pv

Pn−1

)k−1

= O(1)
m
∑

v=1
pv ∣�v∣

k
∣'v∣

k
m+1
∑

n=v+1
�k−1
n

(

pn

Pn

)k
1

Pn−1

= O(1)
m
∑

v=1
pv ∣�v∣

k ∣'v∣
k
(

�vpv

Pv

)k−1
1
Pv

= O(1)
m
∑

v=1
�k−1
v

(

pv

Pv

)k

∣�v∣
k
∣'v∣

k
= O(1).

m+1
∑

n=2

�k−1
n ∣Tn2∣

k
=

m+1
∑

n=2

�k−1
n ∣svPvΔ�v'v∣

k

≤

m+1
∑

n=2

�k−1
n

(

pn
PnPn−1

)k n−1
∑

v=1

∣sv∣
k
P k
v ∣Δ�v∣ ∣'v∣ �

(1−1/k)(1−k)
v

(

Pv

pv

)(k−1)(1−1/k)

×

(

n−1
∑

v=1

�1−1/k
v ∣'v∣

(

Pv

pv

)(1/k)−1

∣Δ�v∣

)k−1

= O(1)
m
∑

v=1

P k
v ∣Δ�v∣ ∣'v∣ �

(1−1/k)(1−k)
v

(

Pv

pv

)(k−1)(1−1/k) m+1
∑

n=v+1

�k−1
n

(

pn
PnPn−1

)k

= O(1)

m
∑

v=1

Pv ∣Δ�v∣ ∣'v∣ �
(1−1/k)(1−k)
v

(

Pv

pv

)(k−1)(1−1/k) m+1
∑

n=v+1

�k−1
n

(

pn
Pn

)k
1

Pn−1

= O(1)

m
∑

v=1

∣Δ�v∣ ∣'v∣ �
(1−1/k)(1−k)
v

(

Pv

pv

)(k−1)(1−1/k) (
�vpv
Pv

)k−1

= O(1)

m
∑

v=1

�1−1/k
v ∣'v∣

(

Pv

pv

)(1/k)−1

∣Δ�v∣ = O(1).

m+1
∑

n=2

�k−1
n ∣Tn3∣

k
=

m+1
∑

n=2

�k−1
n ∣svPv�v+1Δ'v∣

k

≤
m+1
∑

n=2

�k−1
n

(

pn
Pn

)k
1

Pn−1

n−1
∑

v=1

∣sv∣
k P k

v

pk−1
v

∣�v+1∣
k ∣Δ'v∣

k

(

n−1
∑

v=1

pv
Pn−1

)k−1

= O(1)
m
∑

v=1

P k
v

pk−1
v

∣�v+1∣
k ∣Δ'v∣

k
m+1
∑

n=v+1

�k−1
n

(

pn
Pn

)k
1

Pn−1

= O(1)

m
∑

v=1

P k
v

pk−1
v

∣�v∣
k
∣Δ'v∣

k

(

�vpv
Pv

)k−1
1

Pv

= O(1)

m
∑

v=1

�k−1
v ∣�v∣

k
∣Δ'v∣

k
= O(1).
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m+1
∑

n=2

�k−1
n ∣Tn4∣

k
=

m+1
∑

n=2

�k−1
n

∣

∣

∣

∣

sn
pn
Pn

�n'n

∣

∣

∣

∣

k

=

m+1
∑

n=2

�k−1
n

(

pn
Pn

)k

∣�n∣
k
∣'n∣

k
= O(1).

Since the behavior of the Fourier series concerns the convergence for a particular
value of x depends on the behavior on the function in the immediate neighborhood
of this point only, this justifies (1.2) and valid. This completes the proof. □

Remark. The result of [7] follows from theorem 2.1 by putting

'n = Pn/npn, Δ'n = O(1/n).
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