ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

WAAD SULAIMAN

Abstract

In this paper generalization as well as improvement to the Sarigöl's result concerning local property of factored Fourier series has been achieved.

1. Introduction

Let $\sum a_{n}$ be a given series with partial sums $\left(s_{n}\right)$, and let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=p_{0}+\ldots+p_{n} \rightarrow \infty \text { as } n \rightarrow \infty
$$

The sequence to sequence transformation

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(T_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$.The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta\right|_{k}$, $k \geq 1$ if (see [8)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

In the special case when θ_{n} is equal to $P_{n} / p_{n}, n$, we obtain $\left|\bar{N}, p_{n}\right|_{k},\left|R, p_{n}\right|_{k}$ summabilities respectively.

Let f be a function with period 2π, integrable (L) over $(-\pi, \pi)$. Without loss of generality, we may assume that the constant term of the Fourier series of f is zero, that is

$$
\begin{gather*}
\int_{-\pi}^{\pi} f(t) d t=0 \\
f(t) \approx \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=1}^{\infty} C_{n}(t) \tag{1.2}
\end{gather*}
$$

The sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n, where $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.

[^0]Generalizing the results([1], 2], [5], [6), Bor [3] has proved the following result Theorem 1.1. Let $k \geq 1$ and $\left(p_{n}\right)$ be a sequence satisfying the conditions

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{1.3}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right) \tag{1.4}
\end{align*}
$$

If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{gather*}
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v}\right)^{k}=O(1) \tag{1.5}\\
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \Delta \lambda_{v}=O(1) \tag{1.6}\\
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v+1}\right)^{k}=O(1) \tag{1.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right) \tag{1.8}
\end{equation*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} P_{n} / n p_{n}$ at a point can be ensured by local property, where $\left(\lambda_{n}\right)$ is convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent.

In his roll, Sarıgöl [7] generalized the above Bor's result by giving the following Theorem 1.2. Let $k \geq 1$ and $\left(p_{n}\right)$ be a sequence satisfying the conditions

$$
\begin{equation*}
\Delta\left(P_{n} / n p_{n}\right)=O(1 / n) \tag{1.9}
\end{equation*}
$$

Let $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent. If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{align*}
& \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{P_{v}}{v^{k} p_{v}} \Delta \lambda_{v}<\infty \tag{1.10}\\
& \sum_{v=1}^{m} \theta_{v}^{k-1}\left(\frac{\lambda_{v}}{v}\right)^{k}<\infty \tag{1.11}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right) \tag{1.12}
\end{equation*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} P_{n} / n p_{n}$ at a point can be ensured by local property of f.

The following Lemmas are needed for our aim

Lemma 1.3. 5. If the sequence $\left(p_{n}\right)$ satisfies the conditions

$$
\begin{gather*}
P_{n}=O\left(n p_{n}\right) \tag{1.13}\\
P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right) \tag{1.14}
\end{gather*}
$$

then

$$
\begin{equation*}
\Delta\left(P_{n} / n p_{n}\right)=O(1 / n) \tag{1.15}
\end{equation*}
$$

Lemma 1.4. 4]. If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then $\left(\lambda_{n}\right)$ is non-negative and decreasing and $\Delta \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.

2. Main Results

The coming result covers all the results mentioned in the references
Theorem 2.1. Let $k \geq 1$, and let the sequences $\left(p_{n}\right),\left(\theta_{n}\right),\left(\lambda_{n}\right)$ and $\left(\varphi_{n}\right)$ where $\theta_{n}>0$, are all satisfying

$$
\begin{gather*}
\left|\lambda_{n+1}\right|=O\left(\left|\lambda_{n}\right|\right), \tag{2.1}\\
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k}\left|\varphi_{n}\right|^{k}<\infty \tag{2.2}\\
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\lambda_{n}\right|^{k}\left|\Delta \varphi_{n}\right|^{k}<\infty \tag{2.3}\\
\sum_{v=1}^{n-1} \theta_{v}^{1-1 / k}\left|\varphi_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{(1 / k)-1}\left|\Delta \lambda_{v}\right|<\infty \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right) \tag{2.5}
\end{equation*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} \varphi_{n}$ at a point can be ensured by local property of f.
Proof. Let $\left(T_{n}\right)$ denote the $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} \varphi_{n}$. Then, we have

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} \lambda_{v} \varphi_{v} a_{v} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} a_{v}\right) \Delta\left(P_{v-1} \lambda_{v} \varphi_{v}\right)+\left(\sum_{v=1}^{n} a_{v}\right) \frac{p_{n}}{P_{n}} \lambda_{n} \varphi_{n} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(-s_{v} p_{v} \lambda_{v} \varphi_{v}+s_{v} P_{v} \Delta \lambda_{v} \varphi_{v}+s_{v} P_{v} \lambda_{v+1} \Delta \varphi_{v}\right)+s_{n} \frac{p_{n}}{P_{n}} \lambda_{n} \varphi_{n} \\
& =T_{n 1}+T_{n 2}+T_{n 3}+T_{n 4} .
\end{aligned}
$$

In order to complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n r}^{k}\right|<\infty, \quad r=1,2,3,4
$$

Applying Holder's inequality,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n 1}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|s_{v} p_{v} \lambda_{v} \varphi_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k}\left(\sum_{v=1}^{n-1} \frac{p_{v}}{P_{n-1}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k}=O(1) \text {. } \\
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n 2}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|s_{v} P_{v} \Delta \lambda_{v} \varphi_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k} P_{v}^{k}\left|\Delta \lambda_{v}\right|\left|\varphi_{v}\right| \theta_{v}^{(1-1 / k)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)(1-1 / k)} \\
& \times\left(\sum_{v=1}^{n-1} \theta_{v}^{1-1 / k}\left|\varphi_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{(1 / k)-1}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} P_{v}^{k}\left|\Delta \lambda_{v}\right|\left|\varphi_{v}\right| \theta_{v}^{(1-1 / k)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)(1-1 / k)} \sum_{n=v+1}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k} \\
& =O(1) \sum_{v=1}^{m} P_{v}\left|\Delta \lambda_{v}\right|\left|\varphi_{v}\right| \theta_{v}^{(1-1 / k)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)(1-1 / k)} \sum_{n=v+1}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|\left|\varphi_{v}\right| \theta_{v}^{(1-1 / k)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)(1-1 / k)}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{1-1 / k}\left|\varphi_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{(1 / k)-1}\left|\Delta \lambda_{v}\right|=O(1) \text {. } \\
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n 3}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|s_{v} P_{v} \lambda_{v+1} \Delta \varphi_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k} \frac{P_{v}^{k}}{p_{v}^{k-1}}\left|\lambda_{v+1}\right|^{k}\left|\Delta \varphi_{v}\right|^{k}\left(\sum_{v=1}^{n-1} \frac{p_{v}}{P_{n-1}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \frac{P_{v}^{k}}{p_{v}^{k-1}}\left|\lambda_{v+1}\right|^{k}\left|\Delta \varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \frac{P_{v}^{k}}{p_{v}^{k-1}}\left|\lambda_{v}\right|^{k}\left|\Delta \varphi_{v}\right|^{k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1}\left|\lambda_{v}\right|^{k}\left|\Delta \varphi_{v}\right|^{k}=O(1) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n 4}\right|^{k} & =\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|s_{n} \frac{p_{n}}{P_{n}} \lambda_{n} \varphi_{n}\right|^{k} \\
& =\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k}\left|\varphi_{n}\right|^{k}=O(1)
\end{aligned}
$$

Since the behavior of the Fourier series concerns the convergence for a particular value of x depends on the behavior on the function in the immediate neighborhood of this point only, this justifies (1.2) and valid. This completes the proof.

Remark. The result of [7] follows from theorem 2.1 by putting

$$
\varphi_{n}=P_{n} / n p_{n}, \quad \Delta \varphi_{n}=O(1 / n)
$$

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References
[1] S. N. Bhatt, An aspect of local property of $|R, \log n, 1|$ summability of the factored Fourier series, Proc. Nat. Inst. India 26 (1968) 69-73.
[2] H. Bor, Local property of $\left|N, p_{n}\right|_{k}$ summability of the factored Fourier series, Bull. Inst. Math. Acad. Sinica. 17 (1980) 165-170.
[3] H. Bor, On the local property of Fourier series. Bull. Math. Anal. Appl. 1 (2009), 15-21.
[4] H. C. Chow, On the summability factors of infinite series, J. London Math. Soc. 16 (1941) 215-220.
[5] K. Matsumoto, Local property of the summability $\left|R, \lambda_{n}, 1\right|$, Thoku Math. J. 2 (8) (1956) 114-124.
[6] K. N. Mishra, Multipliers for $\left|\bar{N}, p_{n}\right|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica. 14 (1986) 431-438.
[7] M.A. Sarigöl, On the local property of the factored Fourier series, Bull. Math. Anal. Appl. 1 (2009), 49-54.
[8] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992) 313-317.
waad Sulaiman, Department of Computer Engineering, College of engineering, University of Mosul, Iraq

E-mail address: waadsulaiman@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 40G99, 43A24, 42B24.
 Key words and phrases. Absolute summability; Fourier series; Local property.
 © 2010 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted April, 2010. Published Jun, 2010.

