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EXISTENCE AND UNIQUENESS OF A RENORMALIZED

SOLUTION OF A MULTIVALUED FOURIER PROBLEM WITH

L1-DATA

TIYAMBA VALEA, AROUNA OUÉDRAOGO

Abstract. In this manuscript, we are concerned with the existence and unique-

ness of the renormalized solution of a nonlinear elliptic problem β(u)−div a(x,Du) 3
f in Ω, coupled with a Fourier boundary conditions a(x,Du).η + λu = g on
∂Ω, where f and g are functions of L1(Ω) and L1(∂Ω) respectively. The func-

tional setting involves Lebesgue and Sobolev spaces with variable exponent.

Some a-priori estimates are used to obtain our results.

1. Introduction

The literature contains a wide field of research on Fourier-type problems involving
L1-data. Many of these studies deal with non-homogeneous boundary conditions
of the Fourier type. The aim of this paper is to investigate the nonlinear elliptic
boundary value problem

P βf,g

β(u)− div a(x,Du) 3 f in Ω,

a(x,Du).η + λu = g on ∂Ω,

where Ω ⊂ RN , (N ≥ 2) is a bounded domain with boundary ∂Ω, η is the unit
outward normal vector on ∂Ω. The function f is in L1(Ω), g is in L1(∂Ω) and
(λ > 0). The graph β = ∂j is maximal monotone defined on R2, with the additional
constraint that 0 ∈ β(0). The vector field a is a Carathodory function such that
a(x, .) is continuous for almost everywhere x in Ω and measurable on Ω for every ξ
in RN and subject to followings conditions:
(H1) (coercivity) There exist constants α > 0 for every x ∈ Ω and all ξ ∈ RN ,

a(x, ξ).ξ ≥ α|ξ|p(·).

(H2) (monotonicity) For all x ∈ Ω and all ξ, η ∈ RN with ξ 6= η there holds

(a(x, ξ)− a(x, η)).(ξ − η) > 0.
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(H3) (growth) There is a constant Λ > 0 and a function K ∈ Lp′(·)(Ω), such that,
for all (x, ξ) ∈ Ω× RN ,

|a(x, ξ)| ≤ Λ(K(x) + |ξ|p(·)−1).

Recently, (cf.[10]) the same type of problem with a Fourier boundary condition,
with the function b : R→ R continuous, nondecreasing and surjective, instead of a
maximal monotone graph β, is studied, and the existence and uniqueness of entropy
solutions have been proved in the L1-setting. The exponent that appears in (H1)
and (H3) depends on the variable x that is we seek solutions to the problem in
variables exponent space. The motivation for working in these spaces arises from
their application in modeling electrorheological and thermorheological fluids (as
cited in [14]), as well as in image restoration (as cited in [4]). When dealing with a
problem where the right-hand side is in L1, Di Perna-Lions introduced the concept
of a renormalized solution, which can be applied when the exponent p is constant.
However, if p depends on x, the notion proposed by Wittbold and Zimmermann
(as cited in [16]) can be adopted and applied to our particular scenario. The rest
of the paper is organized as follows: In section 2, we recall the basic proprieties of
Lebesgue and Sobolev spaces with variable exponent and our main result is stated
and proven in section 3.

2. Preliminaries

Let us compile some fundamental properties of Lebesgue spaces Lp(·)(Ω) and gen-
eralized Sobolev spaces W 1,p(·)(Ω) here for convenience. Let us begin to defined
the following set

C+(Ω) = {p : Ω→ R+ : p is continuous and such that 1 < p− ≤ p+ <∞},

where

p− = min
x∈Ω

p(·) and p+ = max
x∈Ω

p(·).

For any p(·) ∈ C+(Ω), we recall the variable exponent Lebesgue space Lp(·)(Ω) as

Lp(·)(Ω) = {f : Ω→ R measurable:

∫
Ω

|f |p(·)dx < +∞},

endowed with the Luxembourg norm

‖f‖p(·) = inf{λ > 0,

∫
Ω

∣∣∣∣fλ
∣∣∣∣p(·)dx ≤ 1}.

The space
(
Lp(·)(Ω), ‖.‖p(·)

)
is a separable Banach space. Moreover Lp(·)(Ω) is a

separable, uniform convex Banach space, and its conjugate space is Lp
′(·)(Ω), where

1/p(·) + 1/p′(·) = 1. Next (see [7]), we recall the two inequalities below:

(i) For any f ∈ Lp(·)(Ω) and all g ∈ Lp
′(·)(Ω), then we have the Hölder in-

equality: ∣∣∣∣∫
Ω

fgdx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖f‖p(·)‖g‖p′(·). (2.1)

(ii) If p(·) ≤ q(·) a.e. in Ω, and |Ω| <∞, then for all f ∈ Lp(·),

‖f‖p(·) ≤ (1 + |Ω|)‖f‖q(·) (2.2)
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We define the variable exponent Sobolev space W 1,p(·)(Ω) as follows:

W 1,p(·)(Ω) := {f ∈ Lp(·)(Ω) : |Df | ∈ Lp(·)(Ω)N}
with the norm,

‖f‖1,p(·) := ‖f‖p(·) + ‖Df‖p(·), ∀f ∈W 1,p(·)(Ω).

The Banach space
(
W 1,p(·)(Ω), ‖f‖1,p(·)

)
is both separable and reflexive. The mod-

ular ρp(·) of the space Lp(·)(Ω), defined as ρp(·)(f) =

∫
Ω

|f |p(·)dx, plays a crucial

role in manipulating the generalized Lebesgue and Sobolev spaces. The subsequent
result is of great importance and will be useful for our purposes.

Proposition 2.1. . (see. [6]) If un, u ∈ Lp(·)(Ω) and p+ < +∞, then the following
properties hold:

(i) ‖u‖p(·) > 1 =⇒ ‖u‖p−p(·) ≤ ρp(·)(u) ≤ ‖u‖p+p(·);

(ii) ‖u‖p(·) < 1 =⇒ ‖u‖p+p(·) ≤ ρp(·)(u) ≤ ‖u‖p−p(·);

(iii) ‖u‖p(·) < 1 ( resp. = 1; > 1)⇐⇒ ρp(·)(u) < 1 ( resp. = 1; > 1);

(iv) ‖un‖p(·) → 0 ( resp. → +∞)⇐⇒ ρp(·)(un)→ 0( resp. → +∞);

(v) ρp(·)
( u

‖u‖p(·)
)

= 1.

Let u : Ω → R be a measurable function. We define the function ρ1,p(·)(u) as
follows:

ρ1,p(·)(u) :=

∫
Ω

|u|p(·), dx+

∫
Ω

|∇u|p(·), dx.

The following proposition, which can be found in [17], holds:

Proposition 2.2. If u ∈W 1,p(·)(Ω), then the following properties hold:

(i) ‖u‖1,p(·) > 1 =⇒ ‖u‖p−1,p(·) ≤ ρ1,p(·)(u) ≤ ‖u‖p+1,p(·);

(ii) ‖u‖1,p(·) < 1 =⇒ ‖u‖p+1,p(·) ≤ ρ1,p(·)(u) ≤ ‖u‖p−1,p(·);

(iii) ‖u‖1,p(·) < 1 ( resp. = 1; > 1)⇐⇒ ρ1,p(·)(u) < 1 ( resp. = 1; > 1).

For additional properties of variable exponents, we direct the reader to the work of
Kovacik and Rakosnik in [7]. We bring to mind two inequalities: the Poincar-type
inequality and the Poincar-Sobolev type inequality.

Lemma 2.3. (cf. [13]) There exists a constant C ′1 > 0 for every u ∈W 1,1(Ω), we
have∫

Ω

|u|dx ≤ C ′1
(∫

Ω

|Du|dx+

∫
∂Ω

|u|dσ
)

(Poincaré’s type inequality) (2.3)

and there exists a constant C ′2 > 0 for every u ∈W 1,q(Ω), 1 < q < N , we have(∫
Ω

|u|q
∗
dx

) q
q∗

≤ C ′2
(∫

Ω

|Du|qdx+
(∫

∂Ω

|u|dσ
)q)

(Poincaré-Sobolev type inequality).

(2.4)
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We will use the following notations in the rest of this paper: Let A be a measurable
subset of RN . Its N -dimensional Lebesgue measure and its characteristic function
are denoted by |A| and χA, respectively. The positive and negative parts of r are
defined as r+ = max(r, 0) and r− = (−r)+. We denote sign0(r) as 1, 0, or −1,
depending on whether r > 0, r = 0, or r ≤ 0. Similarly, sign+

0 (r) is denoted as 1
or 0, depending on whether r > 0 or r ≤ 0. Furthermore, we will use the notations
u ∧ v = min(u, v) and u ∨ v = max(u, v). Throughout the paper, Tk denotes
the truncation function at height k > 0 defined by Tk(r) = max{−k,min(k, r)}
for all r ∈ R and also define the continuous function hn : R → R by hn(r) =
min((n+ 1− |r|)+, 1) for all n ∈ R.
For any monotone graph γ in R × R and ε > 0, we denote by γε the Yosida

approximation of γ, given by γε = ε
(
I −

(
I + 1

εγ
)−1)

. Note that γε is maximal

monotone and Lipschitz.
We recall the definition of the main section γ0 of γ:

γ0(s) =

 the element of minimal absolute value of γ(s) if γ(s) 6= ∅,
+∞ if [s,+∞) ∩Dom(γ) = ∅,
−∞ if (−∞, s] ∩Dom(γ) = ∅.

Before to give the definition of renormalized solution, let us define the gradient of
measurable functions whose truncates have finite energy (see [2]).

Lemma 2.4. For every u ∈ T 1,1
loc (Ω) there exists a unique measurable function

v : Ω→ RN such that

DTk(u) = vχ{|u|<k} a.e. in Ω.

Furthermore, u ∈W 1,1
loc (Ω) if and only if v ∈ L1

loc(Ω), and then v ≡ Du in the usual
weak sense.

We also define the space

T 1,p(·)(Ω) = {u : Ω→ R measurable such that, Tk(u) ∈W 1,p(·)(Ω),∀k > 0}.

On the other hand, we define T 1,p(·)
tr (Ω) as the set of functions u ∈ T 1,p(·)(Ω) such

that there exists a sequence (un)n ⊂W 1,p(·)(Ω) satisfying the following conditions:
(i) un → u a.e. in Ω,
(ii) DTk(un)→ DTk(u) in L1(Ω) for any k > 0,
(iii) There exists a measurable function v on ∂Ω, such that un → v a.e. in ∂Ω.

The function v is the trace of u in the generalized sense (see [2]). In the sequel the

trace of u ∈ T 1,p(·)
tr (Ω) on ∂Ω will be denoted by tr(u). If u ∈ W 1,p(·)(Ω), tr(u)

coincides with τ(u) in the usual sense. Moreover, for u ∈ T 1,p(·)
tr (Ω) and for every

k > 0, τ(Tk(u)) = Tk(tr(u)) and if φ ∈W 1,p(·)(Ω)∩L∞(Ω) then (u−φ) ∈ T 1,p(·)
tr (Ω)

and tr(u− φ) = tr(u)− tr(φ).

3. Main Results

Definition 3.1. A renormalized solution to P βf,g is a pair of functions (u, b) satis-
fying the following conditions:
(i) u : Ω → R is measurable and finite a.e. in Ω, tr(u) ∈ L1(∂Ω), b ∈ L1(Ω) and
b(x) ∈ β(u(x)) for a.e. x in Ω,
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(ii) for each k > 0, Tk(u) ∈W 1,p(·)(Ω) and
(iii)∫

Ω

bh(u)ξdx+

∫
Ω

a(x,Du).D(h(u)ξ)dx+ λ

∫
∂Ω

uh(u)ξdσ =

∫
Ω

fh(u)ξdx+

∫
∂Ω

gh(u)ξdσ,(3.1)

holds for all h ∈ C1
c (R) and ξ ∈W 1,p(·)(Ω) ∩ L∞(Ω).

Moreover,

lim
k→∞

∫
{k<|u|<k+1}

|Du|p(·) dx = 0. (3.2)

Remark. If (u, b) is a renormalized solution of problem P βf,g then, it satisfying the
following entropy formulation:∫

Ω

a(x,Du).DTk(u− ξ) dx ≤
∫

Ω

(f − b)Tk(u− ξ) dx+

∫
∂Ω

(g − λu)Tk(u− ξ)dσ,

(3.3)

for all ξ ∈W 1,p(·)(Ω) ∩ L∞(Ω) such that ξ(x) ∈ β(u(x)) for a.e. x in Ω.

Remark. Each term in equation (3.1) is clearly well-defined, and the condition
expressed in equation (3.2) is a necessity in the context of renormalized solutions.
Additionally, it provides further details about Du.

Proposition 3.2 presented below establishes the connection between the concepts of
renormalized and entropy solution.

Proposition 3.2. (see [11]) Let’s f ∈ L1(Ω) and g ∈ L1(∂Ω). Under assump-

tions (H1)−(H3), renormalized solution and entropy solution of problem P βf,g are
equivalent.

The following result is the most significant one that we establish

Theorem 3.3. Assume that (H1) − (H3) hold. Then, the problem P βf,g has a
unique renormalized solution.

Proof. To prove the existence of renormalized solution, we use approximate meth-
ods for the multi-step proof. Firstly, we prove, for bounded data f ∈ L∞(Ω) and
g ∈ L∞(∂Ω), the existence of a weak solution u of the elliptic problem with addi-
tional strongly monotone perturbation. Secondly, for L1-data, we approximate f
and g by fµ,ν = (f ∧µ)∨(−ν) and gµ,ν = (g∧µ)∨(−ν) respectively, non decreasing
in µ, non increasing in ν such that ‖fµ,ν‖1 ≤ ‖f‖1 and ‖gµ,ν‖1 ≤ ‖g‖1. Our third

step is to establish the uniqueness of a renormalized solution to P βf,g.

3.1. Existence and uniqueness results for L∞-data.

Proposition 3.4. For f ∈ L∞(Ω) and g ∈ L∞(∂Ω), there exists at least one

renormalized solution (u, b) of P βf,g.

Proof. Our approach involves approximation through the use of a non-decreasing
function s 7→ |s|p(·)−2s and a minimization technique. We will prove certain pre-
liminary estimates and convergence results that will enable us to pass to the limit
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Step 1: Approximate solution for L∞-data.
Consider the following penalized approached problem for ε > 0

P βεf,g

{
βε(T1/ε(uε)) + ε|uε|p(·)−2uε − div a(x,Duε) = f in Ω,

a(x,Duε).η + λuε = g on ∂Ω,

with βε, the Yosida approximation of β as defined in section 3.

Proposition 3.5. For every f ∈ L∞(Ω), g ∈ L∞(∂Ω) there exists at least a weak
solution
uε ∈W 1,p(·)(Ω) ∩ L∞(∂Ω) of P βεf,g.

Proof. (of Proposition 3.5). The operators Aε is defined for every ε > 0 from

W 1,p(·)(Ω) to
(
W 1,p(·)(Ω)

)∗
as follows:

〈Aεuε, ξ〉 =

∫
Ω

βε(T1/ε(uε))ξdx+ε

∫
Ω

|uε|p(·)−2uεξdx+λ

∫
∂Ω

uε ξdσ+

∫
Ω

a(x,Duε).Dξdx.

〈., .〉 is the duality bracket between W 1,p(·)(Ω) and its dual space
(
W 1,p(·)(Ω)

)∗
.

We assert that Aε is surjective through this lemma.

Lemma 3.6. The operator Aε is bounded, coercive and verifies the (M)-property.

Proof. The proof is divided into several claims.

Claim 1: Aε is bounded.
To do this let’s take uε ∈W 1,p(·)(Ω) ∩ L∞(∂Ω),

〈Aεuε, uε〉 =

∫
Ω

βε(T1/ε(uε))uεdx+ ε

∫
Ω

|uε|p(·)−2uεuεdx+ λ

∫
∂Ω

|uε|2dσ +

∫
Ω

a(x,Duε).Duεdx.

Then,

|〈Aεuε, uε〉| ≤
∫

Ω

|βε(T1/ε(uε))uε|dx+ ε

∫
Ω

|uε|p(·)dx

+ λ

∫
∂Ω

|uε|2dσ +

∫
Ω

|a(x,Duε).Duε|dx. (3.4)

As βε(T1/ε(uε)) is bounded in Lp
′(·)(Ω), then there exist a constant C1 > 0 such

that by using Hölder’s inequality, we get∫
Ω

|βε(T1/ε(uε))uε|dx ≤ ‖βε(T1/ε(uε))‖p′(·)‖uε‖p(·) ≤ C1‖uε‖1,p(·). (3.5)

The same the Hölder type inequality implies that

ε

∫
Ω

|uε|p(·)dx ≤ ε
(

1

p−
+

1

p′−

)
|Ω|

1
p′− ‖uε‖p(·) ≤ C2‖uε‖1,p(·) (3.6)

and

λ

∫
∂Ω

|uε|2dσ ≤ λ

(
1

p−
+

1

p′−

)
‖uε‖p′(·)‖uε‖p(·)

≤ C3‖uε‖1,p(·). (3.7)
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Furthermore, by applying Hölder type inequality and using the growth condition
(H3), we can deduce the expression of the last term in inequality (3.4) as follows:∫

Ω

|a(x,Duε).Duε|dx ≤ Λ

(
1

p−
+

1

p′−

)
‖K‖p′(·) ‖Duε‖p(·) + Λ‖Duε‖p(·)

≤ C4‖uε‖1,p(·). (3.8)

Gathering (3.5)-(3.8) in (3.4), it follows that there exists a positive constant C,
which is dependent on C1, C2, C3, and C4,

|〈Aεuε, uε〉| ≤ C‖uε‖1,p(·),

so that Aε is bounded.

Claim 2: The operator Aε is coercive.

〈Aεuε, uε〉 =

∫
Ω

βε(T1/ε(uε))uεdx+ λ

∫
∂Ω

|uε|2dσ

+ε

∫
Ω

|uε|p(·)dx+

∫
Ω

a(x,Duε).Duεdx.

Thanks to the monotonicity of βε ◦ T1/ε, we use the hypothesis (H1) to obtain

〈Aεuε, uε〉 ≥
∫

Ω

a(x,Duε).Duεdx+ ε

∫
Ω

|uε|p(·)dx

≥ α

∫
Ω

|Duε|p(·)dx+ ε

∫
Ω

|uε|p(·)dx

≥ min(α, ε)

(∫
Ω

|Duε|p(·)dx+

∫
Ω

|uε|p(·)dx
)

≥ min(α, ε)‖uε‖p(·)1,p(·). (3.9)

It come from (3.9) that

〈Aεuε, uε〉
‖uε‖1,p(·)

≥ min(α, ε)‖uε‖p(·)−1
1,p(·) , (3.10)

and since p(·) > 1,
〈Aεuε, uε〉
‖uε‖1,p(·)

→ +∞ as ‖uε‖1,p(·) →∞. Then Aε is coercive.

We recall the notion of operator of type (M).

Definition 3.7. (Definition 8.3 [8]) Let X be a reflexive Banach space. A bounded
operator B from X to its dual X ′ is type (M) if

un ⇀ u in X

Bun ⇀ χ in X ′

lim
n→∞

〈Bun, un〉 ≤ 〈χ, u〉

⇒ χ = Bu.
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Claim 3: Aε is type (M).
Let us define Aε = Aε,1 + Aε,2. According to [15], if Aε,1 is type (M) and Aε,2 is
monotone, weakly continuous then Aε is type (M).

〈Aεu, ξ〉 =

∫
Ω

a(x,Du).Dξdx+

∫
Ω

βε(T1/ε(u))ξdx+ ε

∫
Ω

|u|p(·)−2uξdx+ λ

∫
∂Ω

u ξdσ

=

∫
Ω

a(x,Du).Dξdx+ 〈Aε,2u, ξ〉.

(a): For the monotony of Aε,2,
we have

〈Aε,2u, ξ〉 =

∫
Ω

βε(T1/ε(u))ξdx+ ε

∫
Ω

|u|p(·)−2uξdx+ λ

∫
∂Ω

u ξdσ.

We have for u and v belonging to W 1,p(·)(Ω),

〈Aε,2u−Aε,2v, u− v〉 = 〈Aε,2u, u− v〉 − 〈Aε,2v, u− v〉

=

∫
Ω

(βε(T1/ε(u))− βε(T1/ε(v)))(u− v)dx

+ε

∫
Ω

(|u|p(·)−2u− |v|p(·)−2v)(u− v)dx

+λ

∫
∂Ω

|u− v|2dσ. (3.11)

From the monotony of v 7→ |v|p(·)−2v, we deduce that

0 ≤ ε
∫

Ω

(|u|p(·)−2u− |v|p(·)−2v)(u− v)dx.

From the monotony of βε ◦ T1/ε, we conclude that

〈Aε,2u−Aε,2v, u− v〉 ≥ 0. (3.12)

(b): We prove that for all ε > 0, the operator Aε,2 is weakly continuous, that is,

for all sequences (un)n∈N ⊂ W 1,p(·)(Ω) such that un ⇀ u in W 1,p(·)(Ω), we have
Aε,2un ⇀ Aε,2u as n→∞.

For all ξ ∈W 1,p(·)(Ω), we have

〈Aε,2un, ξ〉 =

∫
Ω

βε(T1/ε(un))ξdx+ ε

∫
Ω

|un|p(·)−2unξdx+

∫
∂Ω

un ξdσ. (3.13)

We have |βε(T1/ε(un))ξ| ≤ max(|βε(1/ε)|, |βε(−1/ε)|)|ξ| ∈ Lp(·)(Ω).

Let (un) ⊂ W 1,p(·)(Ω) be converging weakly to some u ∈ W 1,p(·)(Ω). Then
un → u strongly in Lp(·)(Ω). Thus, ∃M > 0, |un| ≤ M , so |un|p(·)−1|ξ| ≤
max(Mp−−1,Mp+−1)|ξ| ∈ Lp(·)(Ω).
Using the Lebesgue dominated convergence theorem, we can passing to the limit
in (3.13) we obtain limn→+∞〈Aε,2un, ξ〉 = 〈Aε,2u, ξ〉. We conclude that Aε,2un →
Aε,2u as n goes to ∞.

For all u, v ∈W 1,p(·)(Ω) we have

〈Aε,1u−Aε,1v, u− v〉 =

∫
Ω

(
a(x,Du)− a(x,Dv)

)
(u− v)dx.

As the integral is non-negative and a satisfies the monotonicity condition (H2), it
follows that Aε,1 is monotone. Thanks to the growth condition (H3) on a, it follows
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that Aε,1 is hemi-continuous. We can conclude that Aε,1 is pseudo-monotone, thus
type (M). Since Aε,1 of type (M) and Aε,2 is both monotone and weakly continuous,
we can infer that the operator Aε is also of type (M). This ends the proof of Lemma
3.6. �

By applying a well-known theorem for monotone operators (see, for instance, [9]),

it follows that Aε is surjective and hence that P βεf,g has at least one weak solution

uε ∈W 1,p(·)(Ω) ∩ L∞(∂Ω) i.e.∫
Ω

βε(T1/ε(uε))ξdx+ ε

∫
Ω

|uε|p(·)−2uεξdx+ λ

∫
∂Ω

uε ξdσ

+

∫
Ω

a(x,Duε).Dξdx =

∫
Ω

fξdx+

∫
∂Ω

gξdσ, ξ ∈W 1,p(·)(Ω). (3.14)

�

Through a comparison principle, we demonstrate the uniqueness of solutions uε to

problem P βεf,g, where the right-hand sides f ∈ L∞(Ω). This principle will play an
important role in the next.

Proposition 3.8. Suppose uε, ũε ∈W 1,p(·)(Ω)∩L∞(∂Ω) are two weak solutions of

P βεf,g and P βε
f̃,g̃

, respectively, for fixed ε > 0 f, f̃ ∈ L∞(Ω) and g, g̃ ∈ L∞(∂Ω). The

comparison principle below holds

ε

∫
Ω

(
|uε|p(·)−2uε − |ũε|p(·)−2ũε

)+
+ λ

∫
∂Ω

(uε − ũε)+dσ

≤
∫

Ω

(
f − f̃

)
sign+

0 (uε − ũε) +

∫
∂Ω

(
g − g̃

)
sign+

0 (uε − ũε). (3.15)

Proof. Consider two weak solutions, denoted by uε and ũε, of two different equations

P βεf,g and P βε
f̃,g̃

, respectively. Let k be a positive constant and define ξ = 1
kTk(uε −

ũε)
+ as a test function in (3.14). Substituting the to equation writen in uε and ũε,

we have:

T1 + T2 + T3 + T4 = T5 + T6, (3.16)

with

T1 =

∫
Ω

(
βε(T1/ε(uε))− βε(T1/ε(ũε))

)1

k
Tk(uε − ũε)+dx,

T2 = ε

∫
Ω

(
|uε|p(·)−2uε − |ũε|p(·)−2ũε

)1

k
Tk(uε − ũε)+dx,

T3 = λ

∫
∂Ω

(
uε − ũε

)1

k
Tk(uε − ũε)+ dσ,

T4 =
1

k

∫
U

(
a(x,Duε)− a(x,Dũε)

)
D(uε − ũε)+ dx,

T5 =

∫
Ω

(
f − f̃

)1

k
Tk(uε − ũε)+dx,

T6 =

∫
∂Ω

(
g − g̃

)1

k
Tk(uε − ũε)+ dσ,

with U = {0 < uε − ũε < k}. By taking the limit as k → 0 in (3.16), we obtain
(3.15). �
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Step 2: L∞-a priori estimate.

Lemma 3.9. Assume (H1) − (H3) and f ∈ L∞(Ω), g ∈ L∞(∂Ω). Let uε be a

weak solution of problem P βεf,g, then for all k > 0∫
Ω

|Duε|p(·)dx ≤ Ck(‖f‖L1(Ω) + ‖g‖L1(∂Ω)) (3.17)

and ∫
Ω

βε(T1/ε(uε))Tk(uε)dx ≤ k(‖f‖L1(Ω) + ‖g‖L1(∂Ω)) (3.18)

hold for all 0 < ε ≤ 1, where C is a positive constant. Moreover,

‖uε‖L1(∂Ω) ≤
‖f‖L1(Ω) + ‖g‖L1(∂Ω)

λ
(3.19)

holds for all 0 < ε ≤ 1.

Proof. Let us proves (3.17). By taking ξ = Tk(uε) as test function in (3.14), we
have∫

Ω

βε(T1/ε(uε))Tk(uε)dx+ ε

∫
Ω

|uε|p(·)−2uε Tk(uε)dx+ λ

∫
∂Ω

uε Tk(uε)dσ

+

∫
Ω

a(x,Duε).Duεdx =

∫
Ω

f Tk(uε)dx+

∫
∂Ω

g Tk(uε)dσ. (3.20)

Notice that the three first terms of (3.20) are nonnegative. Then, using Höder type
inequality we can estimate the right-hand side of (3.20) as follows∫

Ω

f Tk(uε)dx+

∫
∂Ω

g Tk(uε)dσ ≤ ‖f‖L1(Ω)‖Tk(uε)‖L∞(Ω) + ‖g‖L1(∂Ω)‖Tk(uε)‖L∞(∂Ω)

≤ k(‖f‖L1(Ω) + ‖g‖L1(∂Ω)). (3.21)

Thanks to (H1) we get

α

∫
Ω

|Du|p(·)dx ≤ k(‖f‖L1(Ω) + ‖g‖L1(∂Ω)), (3.22)

which implies (3.17).
Next, from (3.20) and (3.21) we deduce (3.18). Using equations (3.20) and (3.21)
once more, we can infer that∫

∂Ω

uε Tk(uε)dσ ≤
k

λ
(‖f‖L1(Ω) + ‖g‖L1(∂Ω)). (3.23)

By dividing (3.23) by k > 0 and then letting k → 0, we obtain∫
∂Ω

|uε|dσ ≤
1

λ
(‖f‖L1(Ω) + ‖g‖L1(∂Ω)), (3.24)

which gives (3.19). �

Lemma 3.10. The sequence
{
βε(T1/ε(uε)

}
ε>0

is uniformly bounded in L1(Ω).

Proof. Divide the inequality (3.18) by k, we get∫
Ω

βε(T1/ε(uε))
1

k
Tk(uε)dx ≤ ‖f‖L1(Ω) + ‖g‖L1(∂Ω), (3.25)
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which implies, when k → 0,∫
Ω

|βε(T1/ε(uε))|dx ≤ ‖f‖L1(Ω) + ‖g‖L1(∂Ω). (3.26)

�

Lemma 3.11. Assume (H1) − (H3) and f ∈ L∞(Ω), g ∈ L∞(∂Ω). Let uε be a

weak solution of problem P βεf,g, then for all k > 0,∫
Ω

|DTk(uε)|p−dx ≤ const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω)(k + 1), (3.27)

and ∫
∂Ω

|Tk(uε)|dσ ≤
‖f‖L1(Ω) + ‖g‖L1(∂Ω)

λ
, (3.28)

where const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω) is a positive constant depending on ‖f‖L1(Ω),
‖g‖L1(∂Ω) and Ω.

Proof. We first prove (3.27). Observe that∫
Ω

|DTk(uε)|p−dx =

∫
{|DTk(uε)|>1}

|DTk(uε)|p−dx+

∫
{|DTk(uε)|≤1}

|DTk(uε)|p−dx

≤
∫
{|DTk(uε)|>1}

|DTk(uε)|p(·)dx+ |Ω|

≤
∫

Ω

|DTk(uε)|p(·)dx+ |Ω|. (3.29)

By the above inequalities (3.29) and thanks to (3.17), we obtain∫
Ω

|DTk(uε)|p−dx ≤ const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω)(k + 1). (3.30)

To prove (3.28), note that |Tk(uε)| ≤ |uε|, then according to (3.19), we obtain the
desired result. �

The following result is necessary for our purposes.

Lemma 3.12. Assume that (H1)− (H3) hold, f ∈ L∞(Ω) and g ∈ L∞(∂Ω). Let

uε be a weak solution of P βεf,g. For k large enough, we have

|{|uε| > k}| ≤
const(‖f‖L1(Ω), ‖g‖L1(∂Ω), p−, (p−)∗,Ω)

kα
(3.31)

and

|{|Duε| > k}| ≤
const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω)(k + 1)

kp−

+
const(‖f‖L1(Ω), ‖g‖L1(∂Ω), p−, (p−)∗,Ω)

kα
, (3.32)

where 1
(p−)∗ = 1

p−
− 1

N , α = (p−)∗(1− 1
p−

).

Proof. (of Lemma 3.12) To begin with, we establish (3.31). Subsequently, we can
deduce the following from inequality (3.27):∫

Ω

|DTk(uε)|p−dx ≤ kK1. (3.33)
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Here, K1 > 0 depending on ‖f‖1, ‖g‖L1(∂Ω) and |Ω|. Now, using Poincaré-Sobolev
type inequality (2.4), there exists a constant K2 > 0 depending on Ω such that

(∫
Ω

|Tk(uε)|(p−)∗dx

) p−
(p−)∗

≤ K2

(∫
Ω

|DTk(uε)|p−dx+
(∫

∂Ω

|Tk(uε)|dσ
)p−)

.

(3.34)

After using Holder’s inequality on the last term present on the right hand side of
equation (3.34), and considering the inequality (3.28), it becomes clear that(∫

∂Ω

|Tk(uε)|dσ
)p−

≤ K3k, (3.35)

where K3 > 0 depending on ‖f‖1, ‖g‖L1(∂Ω), p−,λ, |Ω| and |∂Ω|. From (3.33),(3.34)
and (3.35), we deduce that for any k ≥ 1,

(∫
Ω

|Tk(uε)|(p−)∗dx

) p−
(p−)∗

≤ K4k, (3.36)

where K4 > 0 depending on ‖f‖1, ‖g‖L1(∂Ω), p−, (p−)∗, λ, |Ω| and meas(∂Ω).
From (3.36) we derive that∫

Ω

|Tk(uε)|(p−)∗dx ≤ K5k
(p−)∗

p− , (3.37)

where K5 is a positive constant depending on ‖f‖1, ‖g‖L1(∂Ω), p−, (p−)∗, λ, |Ω|
and meas(∂Ω). Relation (3.37) implies that∫

{|uε|>k}
|Tk(uε)|(p−)∗dx ≤ K5k

(p−)∗

p− , (3.38)

which is equal to

k(p−)∗ |{|uε| > k}| ≤ K5k
(p−)∗

p− . (3.39)

From (3.39) we have

|{|uε| > k}| ≤ K5k
(p−)∗( 1

p−
−1)

, (3.40)

We have obtained the desired result (3.31). Our next task is to show the estimate
(3.32). Let k and θ be positive parameters. We have

Φ(k, θ) = meas{|Duε|p− > θ, |uε| > k}.

Using (3.31) and for a sufficiently large value of k > 0, we get

Φ(k, 0) ≤
const(‖f‖L1(Ω), ‖g‖L1(∂Ω), p−, (p−)∗,Ω)

kα
. (3.41)
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Since the function θ 7→ Φ(k, θ) is non-increasing, we have the inequality Φ(0, θ) ≤
Φ(0, s) for any k, θ > 0 and 0 ≤ s ≤ θ,

Φ(0, θ) = |{|Duε|p− > θ}| = 1

θ

∫ θ

0

Φ(0, θ)ds ≤ 1

θ

∫ θ

0

Φ(0, s)ds

≤ 1

θ

∫ θ

0

Φ(k, s)ds+
1

θ

∫ θ

0

(
Φ(0, s)− Φ(k, s)

)
ds

≤ 1

θ

∫ θ

0

Φ(k, 0)ds+
1

θ

∫ θ

0

(
Φ(0, s)− Φ(k, s)

)
ds

≤ Φ(k, 0) +
1

θ

∫ θ

0

(
Φ(0, s)− Φ(k, s)

)
ds. (3.42)

Hence,

|{|Duε|p− > θ}| ≤ |{|uε| > k}|+ 1

θ

∫ θ

0

(
Φ(0, s)− Φ(k, s)

)
ds. (3.43)

Finally, we can express Φ(0, s)−Φ(k, s) as meas(|Duε|p− > s, |uε| ≤ k). Therefore,
we obtain ∫ ∞

0

(
Φ(0, s)− Φ(k, s)

)
ds =

∫
{|uε|≤k}

|Duε|p−dx. (3.44)

From ∫
Ω

|DTk(uε)|p−dx ≤ const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω)(k + 1),

we deduce that∫
{|uε|≤k}

|Duε|p−dx ≤ const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω)(k + 1). (3.45)

By combining (3.44) and (3.45), we obtain the following∫ ∞
0

(
Φ(0, s)− Φ(k, s)

)
ds ≤ const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω)(k + 1). (3.46)

From (3.43), (3.46), and (3.31), we can infer that

|{|Duε|p− > θ}| ≤
const(‖f‖L1(Ω), ‖g‖L1(∂Ω),Ω)(k + 1)

θ

+
const(‖f‖L1(Ω), ‖g‖L1(∂Ω), p−, (p−)∗,Ω)

kα
. (3.47)

An optimal choice can be determined by minimizing this inequality with respect to
θ. It is given by θ = kp− , up to a multiplicative constant. Substituting this optimal
choice into the inequality leads to (3.32). Hence, we have completed the proof of
Lemma 3.12. �
Step 3: Basic convergence results.
The convergence results below follow from the a priori estimates stated in Lemma
3.9.

Lemma 3.13. For any k > 0, when ε tends to 0,
(i) Tk(uε) → Tk(u) in Lp−(Ω) and a.e. in Ω, DTk(uε) −→ DTk(u) in (Lp(·)(Ω))N ,

(ii) a(x,DTk(uε)) ⇀ a(x,DTk(u)) in (Lp
′(x)(Ω))N ,

(iii) uε converges to some function v a.e. in ∂Ω.
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Proof. (i) For k > 0, the sequence (DTk(uε))ε>0 is bounded in Lp(·)(Ω), thus,
the sequence (Tk(uε))ε>0 is bounded in W 1,p(·)(Ω). Therefore, we can extract a
subsequence, still denoted (Tk(uε))ε>0 for every k > 0, (Tk(uε))ε>0 converges weakly
to σk in W 1,p(·)(Ω) and also that (Tk(uε))ε>0 converges strongly to σk in Lp−(Ω).
We show that the sequence (uε)ε>0 converges to some function u in measure. To this
end, we prove that uε is a Cauchy sequence in measure. Let s > 0 and k > 0 be fixed.
Define Eν = {|uν | > k}, Eµ = {|uµ| > k} and Eν,µ = {|Tk(uν)− Tk(uµ)| > s}.
Note that {|uν − uµ| > s} ⊂ Eν ∪ Eµ ∪ Eν,µ, and thus,

meas({|uν − uµ| > s}) ≤ meas(Eν) +meas(Eµ) +meas(Eν,µ). (3.48)

Let η > 0, using the previous inequality, we choose k = k(η) such that

meas(Eν) ≤ η

3
and meas(Eµ) ≤ η

3
. (3.49)

As Tk(uε) converges strongly in Lp−(Ω), it is a Cauchy sequence in Lp−(Ω). Hence,

∀s > 0, η > 0, ∃ν0 = ν0(s, η) such that ∀ ν, µ ≥ ν0(s, η),(∫
Ω

|Tk(uν)− Tk(uµ)|p(·)dx
) 1
p− ≤

(ηsp−
3

) 1
p−
.

So,

∀ν ≥ ν0, ∀µ ≥ ν0, meas(Eν,µ) ≤ 1

sp−

∫
Ω

(|Tk(uν)− Tk(uµ)|)p(·)dx ≤
(η

3

)
. (3.50)

From (3.48)-(3.50) we deduce that

meas({|uν − uµ| > s}) ≤ η, (3.51)

for all ν, µ ≥ ν0(s, η). The inequality (3.51) shows that (uε)ε>0 is a Cauchy se-
quence in measure, which implies the existence of a measurable function u such
that uε→ u in measure. Then, (uε)ε>0 converges almost everywhere to some mea-
surable function u. We can then extract a subsequence still denoted (uε)ε>0 such
that uε → u a.e. in Ω. As for k > 0, Tk is continuous, then Tk(uε)→ Tk(u) a.e. in
Ω and σk = Tk(u) a.e. in Ω. Using similar arguments as in the proof of Lemma 3.7
in [11], we deduce that DTk(uε)→ DTk(u) strongly in (Lp(·)(Ω))N as ε→ 0.
Proof of (ii): Thanks to (H3) and (3.17), the sequence (a(x,DTk(uε))ε>0 is

bounded in (Lp
′(·)(Ω))N , so there exists a sub-sequence, still denoted (a(x,DTk(uε))ε>0,

such that a(x,DTk(uε)) ⇀ Φk in (Lp
′(·)(Ω))N as ε → 0. It remains to prove that

divΦk = div a(x,DTk(u)). Let us first show that the following inequality holds for
all k > 0,

lim sup
ε→0

∫
Ω

a(x,DTk(uε)).D (Tk(uε)− Tk(u)) dx ≤ 0. (3.52)

Indeed, let k, ε > 0. Using ξ = hn(uε) (Tk(uε)− Tk(u)) as a test function in (3.14)
leads to∫

Ω

hn(uε)a(x,DTk(uε)).D(Tk(uε)−Tk(u))dx = Ak,n,ε+Bk,n,ε+Ck,n,ε+Dk,n,ε+Ek,n,ε+Fk,n,ε,

(3.53)
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where

Ak,n,ε =

∫
Ω

fhn(uε)
(
Tk(uε)− Tk(u)

)
dx,

Bk,n,ε =

∫
∂Ω

ghn(uε)
(
Tk(uε)− Tk(u)

)
dσ,

Ck,n,ε = −
∫

Ω

βε(T1/ε(uε)hn(uε)
(
Tk(uε)− Tk(u)

)
,

Dk,n,ε = −ε
∫

Ω

|uε|p(·)−2uε(Tk(uε)− Tk(u))hn(uε)dx,

Ek,n,ε = −λ
∫
∂Ω

uε (Tk(uε)− Tk(u))hn(uε)dx,

Fk,n,ε = −
∫

Ω

h′n(uε)a(x,DTk(uε)).Duε
(
Tk(uε)− Tk(u)

)
dx.

We examine the behavior of the each terms in (3.53) as ε→ 0 then n→∞, respec-
tively. By observing that |fhn(uε)

(
Tk(uε)−Tk(u)

)
| ≤ 2k|f | ∈ L1(Ω), |ghn(uε)

(
Tk(uε)−

Tk(u)
)
| ≤ 2k|g| ∈ L1(∂Ω), and |uεhn(uε)

(
Tk(uε) − Tk(u)

)
| ≤ 2kC ∈ L1(∂Ω), we

can apply the Lebesgue dominated convergence theorem to conclude

lim
ε↓0

Ak,n,ε = lim
ε↓0

∫
Ω

fhn(uε)
(
Tk(uε)− Tk(u)

)
dx = 0, (3.54)

lim
ε↓0

Bk,n,ε = lim
ε↓0

∫
∂Ω

ghn(uε)
(
Tk(uε)− Tk(u)

)
dσ = 0, (3.55)

lim
ε↓0

Ek,n,ε = − lim
ε→0

λ

∫
∂Ω

uε (Tk(uε)− Tk(u))hn(uε)dx = 0. (3.56)

Next, we focus on term Ck,n,ε. Due to Lemma 3.10 and the convergence of sequence
Tk(uε) − Tk(u) to zero almost everywhere in Ω and in L∞(Ω) weak-∗ as ε goes to
zero, Lebesgue Dominated Convergence Theorem leads to

lim
ε↓0

Ck,n,ε = − lim
ε↓0

sup

∫
Ω

βε(T1/ε(uε)hn(uε)
(
Tk(uε)− Tk(u)

)
dx = 0. (3.57)

Moreover, one has
∣∣∣|uε|p(·)−2uε(Tk(uε)− Tk(u))hn(uε)

∣∣∣ ≤ 2kC then we can deduce

that

lim
ε↓0

Dk,n,ε = − lim
ε↓0

ε

∫
Ω

|uε|p(·)−2uε(Tk(uε)− Tk(u))hn(uε)dx = 0. (3.58)

Considering the term Fk,n,ε, we have

|Fk,n,ε| ≤ 2k

∫
{n<|uε|<n+1}

a(x,Duε)Duεdx.

We prove that

lim sup
n→∞

lim sup
ε→0

∫
{n<|uε|<n+1}

a(x,Duε)Duεdx ≤ 0. (3.59)
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To prove (3.59), we take ξ = T1(uε − Tn(uε)) as test function in (3.14) to obtain∫
Ω

βε(T1/ε(uε))T1(uε − Tn(uε))dx+ ε

∫
Ω

|uε|p(·)−2uε T1(uε − Tn(uε))dx

+ λ

∫
∂Ω

uε T1(uε − Tn(uε))dσ +

∫
Ω

a(x,Duε).DT1(uε − Tn(uε))dx

=

∫
Ω

f T1(uε − Tn(uε))dx+

∫
∂Ω

gT1(uε − Tn(uε)) dσ. (3.60)

Since the three first terms of (3.60) are non-negative, then we deduce that∫
{n<|uε|<n+1}

a(x,Duε)Duεdx ≤
∫

Ω

f T1(uε−Tn(uε))dx+

∫
∂Ω

gT1(uε−Tn(uε)) dσ.

(3.61)
By the Lebesgue Dominated Convergence Theorem, one sees that

lim
ε→0

(∫
Ω

f T1(uε−Tn(uε))dx+

∫
∂Ω

gT1(uε−Tn(uε)) dσ
)

=

∫
Ω

f T1(u−Tn(u))dx+

∫
∂Ω

gT1(u−Tn(u)) dσ.

Again, by the Lebesgue Dominated Convergence Theorem,

lim
n→∞

(∫
Ω

f T1(uε − Tn(uε))dx+

∫
∂Ω

gT1(uε − Tn(uε)) dσ
)

= 0. (3.62)

Passing to the limit as ε→ 0 and to the limit as n→∞ in (3.61) and using (3.62),
we deduce (3.59). Using the peceding result, we obtain

lim sup
ε→0

lim sup
n→∞

Fk,n,ε ≤ 0. (3.63)

Combining (3.54)-(3.63) and letting n→∞, we obtain (3.52).
Using the MintyBrowders arguments, we identify a(x,DTk(u)) with Φk. To do it,
let ϕ ∈ D(Ω) and λ ∈ R \ {0}. Using (3.52) and assumption (H2) we get

λ

∫
Ω

ΦkDϕdx = lim
ε→0

∫
Ω

λa(x,DTk(uε))Dϕdx

≥ lim
ε→0

sup

∫
Ω

a(x,DTk(uε))D(Tk(uε)− Tk(u) + λϕ)dx,

≥ lim
ε→0

sup

∫
Ω

a(x,D[Tk(u)− λϕ])D(Tk(uε)− Tk(u) + λϕ)dx,

≥ λ

∫
Ω

a(x,D[Tk(u)− λϕ])Dϕ. (3.64)

Dividing by λ < 0 and by λ > 0, and passing to the limit with λ→ 0, we obtain∫
Ω

ΦkDϕdx =

∫
Ω

a(x,DTk(u))Dϕdx, ∀ϕ ∈ D(Ω).

Consequently, we have a(x,DTk(u)) = Φk a.e. in Ω. This leads us to the conclusion
that

a(x,DTk(uε)) ⇀ a(x,DTk(u)) weakly in (Lp
′(x)(Ω))N . (3.65)

It remains to show (iii). Using Lemma 3.11, we obtain thanks to the Hölder
inequality and the Poincaré-Sobolev type inequality,∫

Ω

|Tk(uε)|dx ≤ (meas(Ω))
1

((p−)∗)′
(
Ck
) 1
p− , (3.66)
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and ∫
Ω

|DTk(uε)|dx ≤ (meas(Ω))
1

(p−)′
(
Ck
) 1
p− . (3.67)

By applying Fatou’s Lemma, we can take the limit in (3.66) and (3.67) as ε→ 0 to
obtain ∫

Ω

|Tk(u)|dx ≤ (meas(Ω))
1

((p−)∗)′
(
Ck
) 1
p− (3.68)

and ∫
Ω

|DTk(u)|dx ≤ (meas(Ω))
1

(p−)′
(
Ck
) 1
p− , (3.69)

for all k ≥ 1.
For any k > 0, let

Ak := {x ∈ ∂Ω : |Tk(u(x))| < k} and B := ∂Ω \
⋃
k>0

Ak.

Then

meas(B) =
1

k

∫
B

|Tk(u)|dx ≤ 1

k

∫
∂Ω

|Tk(u)|dx

≤ M1

k
‖Tk(u)‖W 1,1(Ω)

≤ M1

k

(
‖Tk(u)‖L1(Ω) + ‖DTk(u)‖L1(Ω)

)
≤ M2

k
1− 1

p−

.

As p− > 1, by letting k → +∞ we deduce that meas(B) = 0. Define on ∂Ω, the
function v by

v(x) := Tk(u(x)) if x ∈ Ak.

We take x ∈ ∂Ω \ (B̄ ∪B), then there exists k > 0 such that x ∈ Ak and we have

uε(x)− v(x) = (uε(x)− Tk(uε(x))) + (Tk(uε(x))− Tk(u(x))).

Since x ∈ Ak we have |Tk(u(x))| < k and so |Tk(uε(x))| < k, from which we deduce
that |uε(x)| < k. Therefore

uε(x)− v(x) = (Tk(uε(x))− Tk(u(x)))→ 0 ε→ 0.

This means that uε converges to v a.e. on ∂Ω, which ends the proof of Lemma
3.13. �

Lemma 3.14. For all h ∈ C1
c (R) and ϕ ∈W 1,p(·)(Ω) ∩ L∞(Ω),

D[h(uε)ϕ]→ D[h(u)ϕ] strongly in (Lp(·)(Ω))N , as ε→ 0.

Proof. The proof of this statement is analogous to the proof of Lemma 3.8 in
([12]). �
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Step 4: Passage to the limit: Testing (3.14) by hn(uε)h(u)ξ where h ∈ C1
c (R) and

ξ ∈W 1,p(·)(Ω) ∩ L∞(Ω), we can write

I1
ε,n + I2

ε,n + I3
ε,n + I4

ε,n = I5
ε,n + I6

ε,n (3.70)

with

I1
ε,n =

∫
Ω

βε(T1/ε(uε))hn(uε)h(u)ξdx,

I2
ε,n = ε

∫
Ω

|uε|p(·)−2uεhn(uε)h(u)ξdx,

I3
ε,n = λ

∫
∂Ω

uε hn(uε)h(u)ξ dσ,

I4
ε,n =

∫
Ω

a(x,Duε).D[hn(uε)h(u)ξ]dx,

I5
ε,n =

∫
Ω

fhn(uε)h(u)ξdx,

I6
ε,n =

∫
∂Ω

ghn(uε)h(u)ξ dσ.

Let’s go to the limit in (3.70), when ε→ 0 then n→∞.
Item 1: Passing to the limit as ε ↓ 0
By Lebesgue dominated convergence Theorem, we see that

lim
ε↓0

I2
ε,n = lim

ε↓0
ε

∫
Ω

|uε|p(·)−2uεhn(uε)h(u)ξdx = 0, (3.71)

lim
ε↓0

I5
ε,n = lim

ε↓0

∫
Ω

fhn(uε)h(u)ξdx =

∫
Ω

fhn(u)h(u)ξdx := I5
n, (3.72)

lim
ε↓0

I3
ε,l = lim

ε↓0
λ

∫
∂Ω

uε hn(uε)h(u)ξ dσ = λ

∫
∂Ω

uhn(u)h(u)ξ dσ := I3
n(3.73)

and

lim
ε↓0

I6
ε,n = lim

ε↓0

∫
∂Ω

ghn(uε)h(u)ξdσ =

∫
∂Ω

ghn(u)h(u)ξdσ := I6
n. (3.74)

Using (3.65) and according to Lemma 3.14, we deduce that

lim
ε→0

I4
ε,l = lim

ε→0

∫
Ω

a(x,Duε).D[hn(uε)h(u)ξ]dx =

∫
Ω

a(x,Du).D[hn(u)h(u)ξ]dx := I4
n. (3.75)

Now, we are concerning with the term I1
ε,n.

By (3.26), βε(T1/ε(uε)) is uniformly bounded in L1(Ω). It follows that there exists
b such that

βε(T1/ε(uε)) ⇀
∗ b in L∞(Ω). (3.76)

We deduce that

lim
ε→0

I1
ε,n = lim

ε→0

∫
Ω

βε(T1/ε(uε))hn(uε)h(u)ξdx =

∫
Ω

bhn(u)h(u)ξdx := I1
n. (3.77)

Item 2: Passage to the limit with l −→ +∞
Combining (3.70) with (3.71)-(3.77) we find

I1
n + I3

n + I4
n = I5

n + I6
n. (3.78)
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Choosing j > 0 such that supp h ⊂ [−j, j], we can replace u by Tj(u) in I1
n, I

3
n and

I4
n. It follows that

lim
n→+∞

I1
n =

∫
Ω

b h(u) ξ dx, (3.79)

lim
n→+∞

I3
n = λ

∫
∂Ω

uh(u)ξ dσ, (3.80)

lim
n→+∞

I4
n =

∫
Ω

a(x,Du).D[h(u)ξ] dx, (3.81)

lim
n→+∞

I5
n =

∫
Ω

f h(u) ξ dx, (3.82)

lim
n→+∞

I6
n =

∫
∂Ω

g h(u) ξ dσ. (3.83)

Combining (3.70) with (3.79)-(3.83) we obtain∫
Ω

b h(u) ξ dx+ λ

∫
∂Ω

uh(u)ξ dσ

+

∫
Ω

a(x,Du).D[h(u)ξ] dx =

∫
Ω

f h(u) ξ dx+

∫
∂Ω

g h(u) ξ dσ, (3.84)

for all h ∈ C1
c (R) and ξ ∈W 1,p(·)(Ω) ∩ L∞(Ω).

Step 5: subdifferential argument.
Consider a maximal monotony graph β, there exists a convex, lower semicontinuous,
proper function j : R → [0,∞] such that β(r) = ∂j(r) for all r ∈ R, almost
everywhere in Ω. The function jε has the following properties:
(i) for ε > 0, jε is convex and differentiable. Also, βε(r) = ∂jε(r) for r ∈ R and a.e.
in Ω.
(ii) lim

ε→0
jε(r) = j(r). It follows from (i) that

jε(r) ≥ jε(T1/ε(uε)) + (r − T1/ε(uε))βε(T1/ε(uε)) (3.85)

holds for all r ∈ R and a.e. in Ω. Suppose we have a measurable subset A of
Ω, and let χA be its characteristic function. Let us fix ε0 and multiply (3.85) by
the function hn(uε)χA. Next, we integrate this resulting expression over the set A.
Using (ii), we arrive at∫

A

jε(r)hn(uε)dx ≥
∫
A

jε0(Tn+1(uε))hn(uε)dx

+(r − Tn+1(uε))hn(uε)βε(T1/ε(uε)) (3.86)

for all r ∈ R and 0 < ε < ε0. By stretching ε0 → 0 and l→∞, we obtain∫
A

j(r)dx ≥
∫
A

j(u)dx+ b(r − u).

Since A is arbitrarily chosen, we deduce from preceding inequality that

j(r) ≥ j(u)) + b(r − u), (3.87)

for r ∈ R and for x ∈ Ω, u(x) ∈ D(β(u(x))) and b(x) ∈ β(u(x)) a.e. in Ω.
To end the proof of Proposition 3.4, it remains to show that u satisfies the renor-
malized condition (3.2). Thanks to (3.59) and using assumptions (H1) and (H2),
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it follows that

lim
n→∞

lim
ε→0

∫
{n<|uε|<n+1}

|Duε|p(·)dx = 0. (3.88)

Thanks to Lemma 3.13,

Duε −→ Du strongly in (Lp(·)(Ω))N ,

which is equivalent to say

lim
ε→0

∫
Ω

|Duε −Du|p(·)dx = 0

Consequently, Lebesgue generalized convergence theorem implies that∫
Ω

|Duε|p(·)dx→
∫

Ω

|Du|p(·)dx as ε→ 0.

Then,

lim
n→∞

lim
ε→0

∫
{n<|uε|<n+1}

|Duε|p(·)dx = lim
n→∞

∫
{n<|u|<n+1}

|Du|p(·)dx = 0. (3.89)

�

Next, we demonstrate that the renormalized solution of P βf,g, when f ∈ L∞(Ω) and

g ∈ L∞(∂Ω), can be considered as an extension of the weak solution concept.

Proposition 3.15. Let (u, b) be a renormalized solution to P βf,g for f ∈ L∞(Ω)

and g ∈ L∞(∂Ω). Then u ∈ W 1,p(·)(Ω) ∩ L∞(∂Ω) and thus, in particular u is a

weak solution to P βf,g.

Proof. The proof of Proposition 3.15 is similar to that of Proposition 5.2 in [16]. �

3.2. Existence results for L1-data.
To prove the existence of renormalized solutions for L1-data, the primary approach
is to examine the problem through its approximated version.

P (bµ,ν , fµ,ν , gµ,ν)

{
bµ,ν − div a(x,Duµ,ν) = fµ,ν in Ω,

a(x,Duµ,ν).η + λuµ,ν = gµ,ν on ∂Ω,

where fµ,ν and gµ,ν are some bi-monotones sequence defined by fµ,ν = (f∧µ)∨(−ν)
and gµ,ν = (g∧µ)∨ (−ν) respectively, non decreasing in µ, non increasing in ν such
that ‖fµ,ν‖1 ≤ ‖f‖1 and ‖gµ,ν‖1 ≤ ‖g‖1.

From Proposition 3.4, it follows that for all µ, ν ∈ N there exists uµ,ν ∈W 1,p(·)(Ω),
bµ,ν ∈ L∞(Ω), such that (uµ,ν , bµ,ν) is a renormalized solution of P (bµ,ν , fµ,ν , gµ,ν).
Choose h(uµ,ν)ξ as test function, we have∫

Ω

bµ,νh(uµ,ν)ξdx+ λ

∫
∂Ω

uµ,νh(uµ,ν)ξdσ

+

∫
Ω

a(x,Duµ,ν).D(h(uµ,ν)ξ)dx =

∫
Ω

fµ,νh(uµ,ν)ξdx+

∫
∂Ω

gµ,νh(uµ,ν)ξdσ.

(3.90)

holds for all h ∈ C1
c (R) and ξ ∈ W 1,p(·)(Ω) ∩ L∞(Ω). We will now present some a

priori estimates that will be essential for the remainder of the study.
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Lemma 3.16. Let (uµ,ν , bµ,ν) be a renormalized solution of P (bµ,ν , fµ,ν , gµ,ν).
Then, for any k > 0 and µ, ν ∈ N, we have∫

Ω

|DTk(uµ,ν)|p(·)dx ≤ k

α

(
‖f‖1 + ‖g‖1

)
, (3.91)∫

Ω

|bµ,ν |dx ≤ ‖f‖1 + ‖g‖1, (3.92)∫
∂Ω

|uµ,ν |dσ ≤
1

λ

(
‖f‖1 + ‖g‖1

)
, (3.93)

hold for all µ, ν ∈ N.

Proof. The proof of Lemma 3.16 follows the same lines as the proof of Lemma
3.9. �

In order to pass to the limit as µ, ν →∞, in the approximate problem P (bµ,ν , fµ,ν , gµ,ν),
the strong convergence of uµ,ν in L1(Ω) is necessary. Thus, we need the following
lemma.

Lemma 3.17. For any µ, ν ∈ N, we have

uµ,ν+1 ≤ uµ,ν ≤ uµ+1,ν a.e. in Ω, (3.94)

uµ,ν+1 ≤ uµ,ν ≤ uµ+1,ν a.e. in ∂Ω (3.95)

and

bµ,ν+1 ≤ bµ,ν ≤ bµ+1,ν a.e. in Ω. (3.96)

Proof. Since fµ,ν and gµ,ν are increasing in µ and decreasing in ν, then for all
µ, ν > 0,

fµ,ν+1 ≤ fµ,ν ≤ fµ+1,ν and gµ,ν+1 ≤ gµ,ν ≤ gµ+1,ν .

From Proposition 3.8 it follows that for all ε > 0,

uεµ,ν+1 ≤ uεµ,ν ≤ uεµ+1,ν a.e. in Ω (3.97)

and

uεµ,ν+1 ≤ uεµ,ν ≤ uεµ+1,ν a.e. in ∂Ω. (3.98)

Then, passing the limit with ε → 0 in (3.97)-(3.98), yield (3.94)-(3.95). Setting
bε := βε

(
T 1
ε
(uε)

)
, using (3.94), the monotonicity of βε ◦ T 1

ε
and the fact that

βε(T1/ε(uε)) ⇀
∗ b in L∞(Ω) we get

bµ,ν+1 ≤ bµ,ν ≤ bµ+1,ν a.e. in Ω. (3.99)

�

Remark. By (3.99) and (3.92), for any ν ∈ N there exists bν ∈ L1(Ω) such that
bµ,ν → bν as µ→ +∞ in L1(Ω) and a.e. in Ω and b ∈ L1(Ω), such that bν → b as
ν → +∞ in L1(Ω).
According to (3.94), we can infer that the sequence (uµ,ν)µ is monotone increasing.

Thus, for any ν ∈ N, uµ,ν → uν almost everywhere in Ω, where uν : Ω → R is a
measurable function. Using (3.94) again, we can conclude that the sequence (uν)ν
is monotone decreasing. Consequently, uν → u, where u : Ω → R is a measurable
function. In consequence, we can write:

uµ,ν ↑µ uν ↓ν u strongly in L1(Ω), (3.100)
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and

bµ,ν ↑µ bν ↓ν b weakly in L1(Ω). (3.101)

To show that u is finite almost everywhere, we give an estimate of the sets of uµ,ν
at different levels, as shown below.

Lemma 3.18. For µ, ν ∈ N, let (uµ,ν , bµ,ν) be a renormalized solutions of P (bµ,ν , fµ,ν , gµ,ν).
Then, there exists a constant C > 0, not depending on µ, ν ∈ N such that

|{|uµ,ν | ≥ l}| ≤ C l−(p−−1), (3.102)

lim
ν→+∞

lim
m→+∞

|{|uµ,ν | ≥ l}| = |{|u| ≥ l}| ≤ C l−(p−−1) ≤ C l−(p−−1) (3.103)

for all l ≥ 1 and

b ∈ β(u) a.e. in Ω. (3.104)

Proof. The demonstration of Lemma 3.18 proceeds similarly to that of Lemma 6.2
in [16]. �

On the basis of these estimates, the following results are given.

Lemma 3.19. For µ, ν ∈ N, let (uµ,ν , bµ,ν) be a renormalized solutions of P (bµ,ν , fµ,ν , gµ,ν).
There exists a subsequence (µ(ν))ν such that setting bν := bµ(ν),ν , fν := fµ(ν),ν and uν :=
uµ(ν),ν , we have,
(i) uν → u almost everywhere in Ω,

(ii) Tk(uν)→ Tk(u) in Lp(·)(Ω) and a.e. in Ω

(iii) DTk(uν) ⇀ DTk(u) in
(
Lp(·)(Ω)

)N
,

(iv) uν converges to v a.e. on ∂Ω.

Proof. For the proof of (i), we proceed in the same way as in Lemma 3.13. For (ii),
(iii), observe that from (3.91), the sequence (Tk(uν))ν∈N is bounded in W 1,p(·)(Ω).
We can extract from this sequence a subsequence still denoted (Tk(uν))ν∈N which
converges weakly to Tk(u) in W 1,p(·)(Ω), strongly in Lp(·)(Ω) and a.e. in Ω when
ν → +∞. Since {DTk(uν)}ν∈N is bounded in (Lp(·)(Ω))N and converges in mea-
sure to DTk(u), then DTk(uν) → DTk(u) strongly in L1(Ω) (See[2] Lemma 6.1).
Moreover uν → u a.e. in Ω. Consequently u ∈ T 1,p(·)(Ω).
The proof of (iv) is similar to the proof of (iii) Lemma 3.13 for a sequence indexed
by ν. �

Now we have to prove the pseudomonotony argument.

Lemma 3.20. There exists a field Φk ∈
(
Lp
′(·)(Ω)

)N
satisfying

a(x,DTk(uν)) ⇀ Φk in
(
Lp
′(·)(Ω)

)N
and

divΦk = div a(x,DTk(u)).
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Proof. The sequence (a(x,DTk(uν))ν∈N is bounded in (Lp
′(·)(Ω))N by (H3). Then,

there exists Φk ∈ (Lp
′(·)(Ω)N ) such that a(x,DTk(uν)) ⇀ Φk in (Lp

′(·)(Ω)N ) as
ν →∞. It remains to prove that divΦk = div a(x,DTk(u)).
We claim that

lim
ν→∞

sup

∫
Ω

a(x,DTk(uν)).D(Tk(uν)− Tk(u))dx ≤ 0. (3.105)

The proof of (3.105) is the same as that shown in (ii) of Lemma 3.13. Indeed, the
choice of the admissible test function hn(uν)(Tk(uν)− Tk(u)) in P (bµ,ν , fµ,ν , gµ,ν)
and a study of the behavior of each term when ν → ∞ allows us to obtain the
desired result i.e. (3.105). Now, our goal is to prove that

divΦk = div a(x,DTk(u)) in D′(Ω) for all k > 0. (3.106)

Indeed, for Φk ∈ D′(Ω), Φk ≥ 0, λ ∈ R, we have

λ

∫
Ω

ΦkDϕdx = lim
ν→0

∫
Ω

λa(x,DTk(uν))Dϕdx

≥ lim
ν→0

sup

∫
Ω

a(x,DTk(uν))D(Tk(uν)− Tk(u) + λϕ)dx,

≥ lim
ν→0

sup

∫
Ω

a(x,D[Tk(u)− λϕ])D(Tk(uν)− Tk(u) + λϕ)dx,

≥ λ

∫
Ω

a(x,D[Tk(u)− λϕ])Dϕdx. (3.107)

Dividing by λ < 0 and by λ > 0, and passing to the limit with λ→ 0, we obtain∫
Ω

ΦkDϕdx =

∫
Ω

a(x,DTk(u))Dϕdx, ∀ϕ ∈ D(Ω).

Hence a(x,DTk(u)) = Φk a.e. in Ω.
We conclude that

a(x,DTk(uν)) ⇀ a(x,DTk(u)) weakly in (Lp
′(·)(Ω))N .

�

To conclude with the proof of existence part, we pass to the limit in (3.90)
as µ, ν → +∞. So, testing (3.90) by hn(uν)h(u)ξ where h ∈ C1

c (R) and ξ ∈
W 1,p(·)(Ω) ∩ L∞(Ω) we write

I1
ν,l + I2

ν,l + I4
ν,l = I4

ν,l + I5
ν,l, (3.108)

where

I1
ν,l =

∫
Ω

bν hn(uν)h(u) ξdx,

I2
ν,l = λ

∫
∂Ω

uν hn(uν)h(u)ξdσ,

I3
ν,l =

∫
Ω

a(x,Duν).D[hn(uν)h(u) ξ]dx,

I4
ν,l =

∫
Ω

fν hn(uν)h(u) ξdx,

I5
ν,l =

∫
∂Ω

gν hn(uν)h(u)ξdσ.
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We aim too take the limit of (3.108) as ν →∞, and then n→∞.

Step 1: passing to the limit with ν → +∞
The convergence results of Lemma 3.19 allow us to conclude that

lim
n→∞

I1
ν,l =

∫
Ω

b hn(u)h(u) ξ dx := I1
l , (3.109)

lim
ν→∞

I2
ν,l = λ

∫
∂Ω

uν hn(uν)h(u)ξdσ := I2
l , (3.110)

lim
ν→∞

I4
ν,l =

∫
Ω

f hn(u)h(u) ξ dx := I4
l , (3.111)

lim
ν→∞

I5
ν,l =

∫
∂Ω

g hn(u)h(u) ξdσ := I5
l . (3.112)

With similar arguments as the precedent,

lim
ν→∞

I3
ν,l =

∫
Ω

a(x,Du).D[hn(uν)h(u) ξ] dx := I3
n. (3.113)

Step 2: passage to the limit with n→ +∞
By combining (3.109) with (3.110)-(3.113), we obtain for all n ≥ 1

I1
n + I2

n + I3
l = I4

n + I5
n. (3.114)

Choosing j > 0 such that supp(h) ⊂ [−j, j], then Tj(u) = u on supp(h). This

allows us to substitute u with Tj(u) in I1
l , I

2
l and I3

l . Thus, we have:

lim
n→∞

I1
n =

∫
Ω

b h(u) ξ dx, (3.115)

lim
n→∞

I2
n = λ

∫
∂Ω

uh(u) ξdx, (3.116)

lim
n→∞

I3
n =

∫
Ω

a(x,Du).D[h(u) ξ] dx, (3.117)

lim
n→∞

I4
n =

∫
Ω

f h(u) ξ dx, (3.118)

lim
n→∞

I5
n =

∫
∂Ω

g h(u) ξdx. (3.119)

Gathering (3.115)-(3.119), we obtain (3.1).
3.3. Proof of uniqueness for L1-data.
To prove Theorem 3.3 and establish the uniqueness of renormalized solutions for

the problem P βf,g with L1(Ω)-data, we consider two renormalized solutions (u, b)

and (ũ, b̃), where f ∈ L1(Ω) and g ∈ L1(∂Ω), and let γ and k be two positive
real numbers. We use ξ = Tγ(ũ) as the test function for the solution (u, b) and

ξ = Tγ(u) as the test function for the solution (ũ, b̃) in the entropy inequality (3.3),
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lead to:∫
Ω

b Tk(u− Tγ(ũ)) dx+ λ

∫
∂Ω

u1 Tk(u− Tγ(ũ)) dσ +

∫
Ω

a(x,Du).DTk(u− Tγ(ũ)) dx

≤
∫

Ω

f Tk(u− Tγ(ũ)) dx+

∫
∂Ω

g Tk(u− Tγ(ũ)) dσ

(3.120)

and∫
Ω

b̃ Tk(ũ− Tγ(u))dx+ λ

∫
∂Ω

u2 Tk(ũ− Tγ(u))dσ +

∫
Ω

a(x,Dũ).DTk(ũ− Tγ(u)) dx

≤
∫

Ω

f Tk(ũ− Tγ(u))dx+

∫
∂Ω

g Tk(ũ− Tγ(u))dσ.

(3.121)

Adding inequalities (3.120) and (3.121), we get

Kγ,k + Lγ,k + Iγ,k ≤
∫

Ω

f (Tk(u− Tγ(ũ) + Tk(ũ− Tγ(u))dx

+

∫
∂Ω

g (Tk(u− Tγ(ũ) + Tk(ũ− Tγ(u))dσ. (3.122)

where

Iγ,k :=

∫
Ω

a(x,Du) .DTk(u− Tγ(ũ))dx+

∫
Ω

a(x,Dũ)
)
.DTk(ũ− Tγ(u)) dx,

Kγ,k :=

∫
Ω

b Tk(u− Tγ(ũ))dx+

∫
Ω

b̃ Tk(ũ− Tγ(u)) dx,

Lγ,k := λ

∫
∂Ω

u1Tk(u− Tγ(ũ))dσ + λ

∫
∂Ω

u2Tk(ũ− Tγ(u)) dσ.

Our goal is to take the limit as γ → +∞ for k fixed and then k → +∞ in (3.122).
Since Tk(u − Tγ(ũ)) + Tk(ũ − Tγ(u)) = 0 in {|u| ≤ γ, |ũ| ≤ γ}, it is possible to
estimate the two integrals on the right-hand side of equation (3.122) by∣∣∣∣ ∫

Ω

f

(
Tk(u−Tγ(ũ)) +Tk(ũ−Tγ(u))

)
dx

∣∣∣∣ ≤ 2k

(∫
{|u|>γ}

|f | dx+

∫
{|ũ|>γ}

|f | dx
)

and∣∣∣∣ ∫
∂Ω

g

(
Tk(u−Tγ(ũ))+Tk(ũ−Tγ(u))

)
dσ

∣∣∣∣ ≤ 2k

(∫
{|u|>γ}

|g| dσ+

∫
{|ũ|>γ}

|g| dσ
)
.

By the Lebesgue converge dominated Theorem and using the fact that, meas({|ui| >
h})→ 0 when γ → +∞ ( for i = 1, 2), it follows that

lim
γ→+∞

∫
Ω

f

(
Tk(u− Tγ(ũ)) + Tk(ũ− Tγ(u))

)
dx = 0 (3.123)

and

lim
γ→+∞

∫
Ω

g

(
Tk(u− Tγ(ũ)) + Tk(ũ− Tγ(u))

)
dσ = 0. (3.124)

For the two first terms of (3.122), notice that, Tk(u − Tγ(ũ)) and Tk(ũ − Tγ(u))
tends respectively to Tk(u− ũ) and Tk(ũ− u) when h goes to infinity. Obviously,

|b Tk(u− Tγ(ũ))| ≤ k|b| ∈ L1(Ω)
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and

|b̃ Tk(ũ− Tγ(u))| ≤ k|b̃| ∈ L1(Ω).

Then by the Lebesgue’s dominated convergence theorem, it yields

lim
γ→+∞

(∫
Ω

b Tk(u− Tγ(ũ)) dx+

∫
Ω

b̃ Tk(ũ− Tγ(u))dx

)
=

∫
Ω

(b− b̃)Tk(u− ũ) dx.

(3.125)

By the same way we obtain

lim
γ→+∞

λ

(∫
∂Ω

uTk(u− Tγ(ũ)) dx+

∫
∂Ω

ũ Tk(ũ− Tγ(u))

)
= λ

∫
∂Ω

(u− ũ)Tk(u− ũ) dx.

(3.126)

To deal with Iγ,k, we can use the same manage as in [10].
Define

ω1 = {|u− ũ| ≤ k, |ũ| ≤ γ}, ω2 = ω1 ∩ {|u| ≤ γ} and ω3 = ω1 ∩ {|u| > γ}.

We start with the first term of Iγ,k. By (H1), we have∫
Ω

a(x,Du) .DTk(u− Tγ(ũ))dx =

∫
{|u−Tγ(ũ)|≤k}

a(x,Du) .D(u− Tγ(ũ))dx

≥
∫
ω2

a(x,Du).D(u− ũ) dx−
∫
ω3

a(x,Du).Dũ dx.(3.127)

According to growth conditions (H3) and the Hölder inequality, the last integral
in (3.127) converges to 0 as γ →∞. Consequently,∫

{|u−Tγ(ũ)|≤k}
a(x,Du) .D(u− Tγ(ũ))dx ≥

∫
ω2

a(x,Du).D(u− ũ) dx. (3.128)

By the same technique, we treat the last term of Ih,k to obtain∫
{|u−Tγ(ũ)|≤k}

a(x,Dũ) .D(ũ− Tγ(u))dx ≥ −
∫
ω2

a(x,Dũ).D(u− ũ) dx. (3.129)

Combining (3.125),(3.126), (3.128) and (3.129), it follows from (3.122) that∫
Ω

(b− b̃)Tk(u− ũ)dx+ λ

∫
∂Ω

(u1 − u2)Tk(u− ũ)dσ

+

∫
{|u−ũ|≤k}

(
a(x,Du)− a(x,Dũ)

)
.(Du−Dũ) dx ≤ 0. (3.130)

Since b ∈ ∂j(u), b̃ ∈ ∂j(ũ) and the sub-gradient of a convex function j is monotone
then
〈∂j(u)−∂j(ũ), u− ũ〉 ≥ 0. Moreover, thanks to assumption (H2) and the fact that
(u− ũ)Tk(u− ũ) ≥ 0, it follows that∫

Ω

(
b− b̃

)
Tk(u− ũ) dx ≥ 0, (3.131)

λ

∫
∂Ω

(u1 − u2)Tk(u− ũ) dσ ≥ 0, (3.132)

∫
{|u−ũ|≤k}

(a(x,Du)− a(x,Dũ)
)
.(Du−Dũ) dx ≥ 0. (3.133)
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Consequently, we deduce from (3.130)∫
Ω

(
b− b̃

)
Tk(u− ũ) dx = 0, (3.134)

λ

∫
∂Ω

(u1 − u2)Tk(u− ũ) dσ = 0, (3.135)∫
{|u−ũ|≤k}

(a(x,Du)− a(x,Dũ)
)
.(Du−Dũ) dx = 0. (3.136)

Since a is strictly monotone, it can be deduced from (3.136) that Du = Dũ almost
everywhere in Ω. This implies the existence of a constant c such that u − ũ = c
almost everywhere in Ω.
By taking the limit of equation (3.134) as k tends to zero, we can derive the following
result:

lim
k→0

∫
Ω

(
b− b̃

)1

k
Tk(u− ũ)dx =

∫
Ω

(
b− b̃

)
sign0(u− ũ)dx

=

∫
Ω

|b− b̃| dx = 0. (3.137)

To summarize, using equation (3.137), we can conclude that b = b̃ almost every-
where in Ω.

u− ũ = c and b = b̃ a.e. in Ω. (3.138)

From (3.135), we obtain

lim
k→0

λ

∫
∂Ω

(
u− ũ

)1

k
Tk(u− ũ)dσ = λ

∫
∂Ω

|u− ũ|dσ = 0

this leads to

u− ũ = 0 a.e. in ∂Ω, (3.139)

hence c = 0 and u = ũ almost everywhere in Ω.
Finally, {

u = ũ a.e. in Ω,

b = b̃ a.e. in Ω,
(3.140)

so the proof of Theorem 3.3 is achieved. �
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Département de Mathématiques, Université Norbert ZONGO, BP 376 Koudougou, Burk-

ina Faso
E-mail address: vtiyamba@yahoo.com

Arouna Ouédraogo
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