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SOME PROPERTIES OF NEW MODIFIED SZÁSZ-MIRAKYAN

OPERATORS IN POLYNOMIAL WEIGHT SPACES VIA POWER

SUMMABILITY METHODS

NAIM L. BRAHA

Abstract. In this paper we will prove the Korovkin type theorem for new

modified Szász-Mirakyan operators via A− statistical convergence and power

summability method. Also we give the rate of the convergence related to the
summability methods and in the last section we give a kind of Voronovskaya

type theorem for A− statistical convergence and Grüss-Voronovskaya type

theorem.

1. Introduction

We shall denote the set of all natural numbers by N. The sequence x = (xk) is
said to be statistically convergent to L if, for every ε > 0, the set Kε = {k ∈ N :
|xk − L| ≥ ε} has natural density zero [11], i.e. for each ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write L = st − limx. Note that every convergent sequence is
statistically convergent but not conversely. In what follows we will use the definition
of the A− statistical convergence. Let A = (anj) be a summability matrix and
x = (xj) be a sequence. If the series

(Ax)n =
∑
j

anjxj ,

converges for every n ∈ N, then we say that (Ax)n is the A− transform of the
sequence x = (xn). If (Ax)n converges to a number L, we say that x is A− sum-
mable to L. The summability matrix, A, is regular, whenever limj xj = L, then
limn (Ax)n = L.

Let A = (anj) be a nonnegative regular summability matrix. The sequence
x = (xj) is said to be A-statistically convergent, see [12], to real number a if for
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any ε > 0

lim
n→∞

∑
j:|xj−a|≥ε

anj = 0.

For this case we write stA − limx = a.
The A− statistical convergence is a generalization of the statistical convergence

and it is proven in the Example given in [8]. The second summability method
which is used in this paper is power summability method. Let (pj) be real sequence
with p0 > 0 and p1, p2, p3, · · · ≥ 0, and such that the corresponding power series
p(t) =

∑∞
j=0 pjt

j has radius of convergence R with 0 < R ≤ ∞. If, for all t ∈ (0, R),

lim
t→R−

1

p(t)

∞∑
j=0

xjpjt
j = L,

then we say that x = (xj) is convergent in the sense of power series method.
(see [16], [19]) The power series method includes many known summability methods
such as Abel and Borel. Both methods have in common that their definitions are
based on power series and they are not matrix methods (see [2],[5] [21]). Matrix
methods are more effective than ordinary methods as shown in an example in [20].

Note that the power series method is regular if and only if

lim
t→R−

pjt
j

p(t)
= 0,

holds for each j ∈ N∪{0}([4]). Throughout the paper we assume that power series
method is regular.

In this paper we will prove the Korovkin type theorem for the new modified
Szász-Mirakyan operators via A−statistical convergence and power summability
method. In the second part we give the rate of convergence related to the summa-
bility methods and in the last section we give a Voronovskaya type theorem for A−
statistical convergence.

Define the class of new modified Szász-Mirakyan operators, [23], by

An(f, r, q, x) =
1

e(nqx+1)r

∞∑
k=0

(nqx+ 1)rk

k!
f

(
k

nq(nqx+ 1)r−1

)
,

for x ∈ [0,∞), r ∈ [2,∞), n ∈ N, q > 0.

It is know that, see [23],

Lemma 1.1. The first few moments for the modified Szász-Mirakyan operators,
are:

(1) An(e0, r, q, x) = 1

(2) An(e1, r, q, x) = x+ 1
nq ,

(3) An(e2, r, q, x) =
(
x+ 1

nq

)2 [
1 + 1

(nqx+1)r

]
(4) An(e3, r, q, x) =

(
x+ 1

nq

)3 [
1 + 3

(nqx+1)r + 1
(nqx+1)2r

]
.
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Proof. The first fourth moments are proven in [23]. We will prove it for test function
e4 = t4. After some calculation we get that

An(t4, r, q, x) =

(
x+

1

nq

)
An(t3, x, q, r)+3

(
x+

1

nq

)
1

(nq(nqx+ 1)r−1)
An(t2, x, q, r)+

3

(
x+

1

nq

)
1

(nq(nqx+ 1)r−1)2
An(t, x, q, r) +

(
x+

1

nq

)
1

(nq(nqx+ 1)r−1)3
.

�

The theory of Korovkin type theorems has been studied in several function
spaces, and further details reader can be found in the following papers (see [1],[3,
5, 6, 7], [9], [10], [14], [15], [17],[18], [20], [21], [22] ).

In what follows we define the following power series for sequence of operators An

lim
t→R−

1

p(t)

∞∑
n=0

An(f, r, q, x)pnt
n = L(f, r, q, x),

and say that the sequence of operators, An, converges in the sense of power series,
to L, for every t ∈ (0, R), if this series converges.

2. main results

In this section we obtain a Korovkin type theorem for the new modified Szász-
Mirakyan operators and then A− statistical convergence of the new modified Szász-
Mirakyan operators to the identity operator.

In what follows we will prove the standard Korovkin type theorem for the new
modified Szász-Mirakyan operators. With Cp([0,∞)) we will denote the space of
all real valued functions f continuous on [0,∞) and such that ωpf is uniformly
continuous and bounded on [0,∞), where ωp(x) = (1 + xp)−1, p ≥ 1, and norm in
Cp is defined by formula([5]):

||f ||p = sup
x∈[0,∞)

ωp(x)|f(x)|.

With B([0, R]) we will denote the space of all bounded functions defined in [0, R].

Theorem 2.1. Let f ∈ Cp([0, R]), for any finite R and An sequence of positive
linear operators from Cp([0, R]) into B([0, R]), such that for every i ∈ {0, 1, 2}

‖Anei − ei‖p = 0, (2.1)

where ei = xi. Then for any f ∈ Cp([0, R])

‖Anf − f‖p = 0. (2.2)

Proof of the theorem is similar to that given in [8] and for this reason we omit
it.

The Korovkin type theorem for A− statistical convergence was given in [10] as
follows:

Theorem 2.2. Let A = (anj) be a nonnegative regular summability matrix and let
(Bj) be a sequence of positive linear operators on C[0, 1], such that for i = 0, 1, 2,

stA − lim
n→∞

||Bjei − ei|| = 0.
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Then for any function f, f ∈ C[0, 1],

stA − lim
n→∞

||Bjf − f || = 0,

where ||f || = max0≤t≤1 |f(t)|.

Based on this theorem, we give the following result for the new modified Szász-
Mirakyan operators.

Theorem 2.3. Let A = (anj) be a nonnegative regular summability matrix and let
(An) be a sequence of positive linear operators on C[0, R], for any finite R, such
that for i = 1, 2

stA − lim
n→∞

||Anei − ei||p = 0,

where ei = xi. Then for any f ∈ C[0, R]

stA − lim
n→∞

||Anf − f ||p = 0.

Proof. From Lemma 1.1 we have:

||Ane1 − e1|| ≤
∣∣∣∣ 1

nq

∣∣∣∣→ 0, as n→∞,

and

||Ane2 − e2|| ≤
∥∥∥∥ x2

(nqx+ 1)r

∥∥∥∥+

∥∥∥∥(2x

nq
+

1

n2q

)(
1 +

1

(nqx+ 1)r

)∥∥∥∥→ 0, as n→∞.

From these relations it follows that

stA − lim ||Ane2 − e2||p = 0.

�

Following Example 1.1 in [8] we can prove that the following sequence is not
statistically convergent but it is A− statistically convergent.

Example 2.4. Define the operators

Pn(f, r, q, x) = (1 + xn)An(f, r, q, x),

where the sequence (xn) is given as follows:

(xk) =


1

m2q+1 ; k = m2 −m, · · · ,m2 − 1

1
m2q+2 ; k = m2;m ∈ N \ {1}

0; otherwise

,

then the following relations are fulfilled

Pn(e0, r, q, x) = 1,

Pn(e1, r, q, x) = x+
1

n1

and

Pn(e2, r, q, x) =

(
x+

1

n1

)2 [
1 +

1

(n1x+ 1)r

]
.

By Theorem 2.3 we obtain

stA − lim
n
||Pnf − f || = 0,
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but the operators Pn(f, r, q, x), do not satisfy Theorem 2.1.

Remark. Consider the case where q = 1, then the sequence (xn) does not converge
statistically, nor converges. As an example consider the second order Cesáro matrix.

A = (ank) =

{
2(n+1−k)

(n+1)(n+2) ; 0 ≤ k ≤ n
0; k > n

,

where

0 ≤ lim
n

∑
k:|xk−α|≥ε

ank = lim
n

∑
k=m2−m,··· ,m2−1
k=m2;m∈N\{1}

ank =

lim
n

2

(n+ 1)(n+ 2)
[1 + · · ·+ n] ≤ lim

n

2

(n+ 1)(n+ 2)
· n(n+ 1)

2
= 1.

This proves that x = (xn) is A− statistically convergent and the following relations
are fulfilled

Pn(e0, r, q, x) = 1,

Pn(e1, r, q, x) = x+
1

n1
,

Pn(e2, r, q, x) =

(
x+

1

n1

)2 [
1 +

1

(n1x+ 1)r

]
.

By Example 2.4 this shows that Pn(f, r, q, x), does not satisfy Theorem 2.1.

Now we will prove the Korovkin type theorem for the new modified Szász-
Mirakyan operators, by power series method. It is known that Korovkin type
theorems are proved by the Abel summability method (see for example [18], [22]).
B[0,∞) will denote the space of all bounded functions on the interval [0,∞) and
with C[0,∞) we will denote the space of all continuous functions defined in the
interval [0,∞).

Theorem 2.5. Let (An), be a sequence of positive linear operators from C[0, R]
into B[0, R], for any finite R, such that for every i ∈ {0, 1, 2}

lim
t→R−

1

p(t)

∥∥∥∥∥
∞∑
n=0

(Anei − ei)pntn
∥∥∥∥∥ = 0, (2.3)

where ei = xi. Then for any f ∈ C[0, R]

lim
t→R−

1

p(t)

∥∥∥∥∥
∞∑
n=0

(Anf − f)pnt
n

∥∥∥∥∥ = 0. (2.4)

Proof. It is obvious that (2.4) follows relation (2.3). Now we will prove the converse,
that relation (2.3) is valid, and we will prove that relation (2.4) is valid, too. Let
f ∈ C[0, R] then there exists a constant K > 0 such that |f(t)| ≤ K for all t ∈ [0, R].
Therefore

|f(t)− f(x)| ≤ 2K, t ∈ [0, R]. (2.5)

For every given ε > 0 there exist a δ > 0 such that

|f(t)− f(x)| ≤ ε (2.6)

whenever |t − x| < δ for all t ∈ [0, R]. Let ψ denote ψ ≡ ψ(t, x) = (t − x)2. If
|t− x| ≥ δ, then we have:
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|f(t)− f(x)| ≤ 2K

δ2
ψ(t, x). (2.7)

Now from relations (2.5)-(2.7), we get

|f(t)− f(x)| < ε+
2K

δ2
ψ(t, x).

Respectively,

−ε− 2K

δ2
ψ(t, x) < f(t)− f(x) <

2K

δ2
ψ(t, x) + ε.

Applying the operator An(1, r, q, x) to this inequality, since An(1, r, q, x) is mono-
tone and linear, we obtain:

An(1, r, q, x)

(
−ε− 2K

δ2
ψ

)
< An(1, r, q, x) (f(t)− f(x)) < An(1, r, q, x)

(
2K

δ2
ψ + ε

)
⇒

−εAn(1, r, q, x)−2K

δ2
An(ψ(t), r, q, x) < An(f, x)−f(x)An(1, r, q, x) <

2K

δ2
An(ψ(t), r, q, x)+εAn(1, r, q, x).

(2.8)
On the other hand

An(f, r, q, x)− f(x) = An(f, r, q, x)− f(x)An(1, r, q, x) + f(x)[An(1, r, q, x)− 1].
(2.9)

From relations (2.8) and (2.9) we have:

An(f, r, q, x)− f(x) <
2K

δ2
An(ψ(t), r, q, x) + εAn(1, r, q, x) + f(x)[An(1, r, q, x)− 1].

(2.10)
Let us now estimate the following expression:

An(ψ(t), r, q, x) = An((x− t)2, r, q, x) = An((x2 − 2xt+ t2), r, q, x)

= x2An(1, r, q, x)− 2xAn(t, r, q, x) +An(t2, r, q, x)

Now, from the last relation and (2.10), we obtain

An(f, r, q, x)− f(x) <
2K

δ2

{
x2[An(1, r, q, x)− 1]− 2x[An(t, r, q, x)− x]

+[An(t2, r, q, x)− x2]
}

+ εAn(1, r, q, x) + f(x)[An(1, r, q, x)− 1]

= ε+ ε[An(1, r, q, x)− 1] + f(x)[An(1, r, q, x)− 1] +

+
2K

δ2

{
x2[An(1, r, q, x)− 1]− 2x[An(t, r, q, x)− x] + [An(t2, r, q, x)− x2]

}
.

Therefore,

|An(f, r, q, x)− f(x)| ≤ ε+

(
ε+K +

2KR2

δ2

)
|An(1, r, q, x)− 1|

+
4KR

δ2
|An(t, r, q, x)− x|+ 2K

δ2
|An(t2, r, q, x)− x2|.

Taking into consideration properties of the weight function, ωp(x), and the above
relations, we obtain:
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ωp(x)|An(f, r, q, x)− f(x)| ≤ ε · ωp(x) + ωp(x)

(
ε+K +

2KR2

δ2

)
|An(1, r, q, x)− 1|

+ωp(x)
4KR

δ2
|An(t, r, q, x)− x|+ ωp(x)

2K

δ2
|An(t2, r, q, x)− x2|,

which leads to

1

p(t)

∥∥∥∥∥
∞∑
n=0

(An(f, r, q, x)− f(x))pnt
n

∥∥∥∥∥ ≤ ε+
(
ε+K +

2KR2

δ2

)
1

p(t)

∥∥∥∥∥
∞∑
n=0

(An(1, r, q, x)− 1))pnt
n

∥∥∥∥∥+

+
4KR

δ2

1

p(t)

∥∥∥∥∥
∞∑
n=0

(An(t, r, q, x)− x))pnt
n

∥∥∥∥∥+
2K

δ2

1

p(t)

∥∥∥∥∥
∞∑
n=0

(An(t2, r, q, x)− x2))pnt
n

∥∥∥∥∥ .
Now we get relation (2.4), from last relation and relation (2.3). From this we get
(2.4) with use of (2.3) �

3. rate of convergence

In this section, we study the rate of the A−statistical convergence for the new
modified Szász-Mirakyan operators and power summability method. We begin by
presenting the following facts:

The modulus of continuity, for a function f(x) ∈ C([0,∞)), is defined as follows:

ω(f, δ) = sup
|h|<δ

|f(x+ h)− f(x)|.

It is known that for any value of the |x− y|,

|f(x)− f(y)| ≤ ω(f, δ)

(
|x− y|
δ

+ 1

)
. (3.1)

We have the following result:

Theorem 3.1. Let A = (aij), be a nonnegative regular summability matrix with
f ∈ C[0,∞). If (αn) is a sequence of positive real numbers such that ω(f, δn) =
stA − 0 (αn) , then

||Anf − f || = stA − 0(αn),

where

δn = sup

{((
k

nq

)2

+ x2

)
− 2x

k

nq
An

(
1

(nqx+ 1)r−1
, r, q, x

)}2

,

for any positive integer n ∈ N.

Proof. Let f ∈ C[0,∞). Taking into consideration the linearity and positivity of
Anf, and relation (3.1), we have

|An(f, r, q, x)−f | ≤ An(|f(t)−f(x)|, r, q, x) ≤ 1

e(nqx+1)r

∞∑
k=0

(nqx+ 1)rk

k!
ω(δ, f)

1 +

∣∣∣ k
nq(nqx+1)r−1 − x

∣∣∣
δ

,
and, by use of Lemma 1.1, we obtain

|An(f, r, q, x)−f | ≤ ω(f, δ)

[
1 +

1

δ

1

e(nqx+1)r

∞∑
k=0

(nqx+ 1)rk

k!

∣∣∣∣ k

nq(nqx+ 1)r−1
− x
∣∣∣∣
]
≤
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ω(f, δ)

[
1 +

1

δ
An

(∣∣∣∣ k

nq(nqx+ 1)r−1
− x
∣∣∣∣ , r, q, x)] .

Applying the Cauchy-Schwarz inequality, to this expression, we get

|An(f, r, q, x)− f | ≤ ω(f, δ)

1 +
1

δ

(
An

(∣∣∣∣ k

nq(nqx+ 1)r−1
− x
∣∣∣∣2 , r, q, x

)) 1
2

 .
On the other hand, based on Lemma 1.1, and definition of the operatorsAn(f, r, q, x),
we have this estimation

An

(∣∣∣∣ k

nq(nqx+ 1)r−1
− x
∣∣∣∣2 , r, q, x

)
=

(
k

nq

)2

An

(
1

(nqx+ 1)2(r−1)
, r, q, x

)
−

2kx

nq
An

(
1

(nqx+ 1)r−1
, r, q, x

)
+ x2An(1, r, q, x)

≤ sup

{((
k

nq

)2

+ x2

)
− 2x

k

nq
An

(
1

(nqx+ 1)r−1
, r, q, x

)}2

,

for every x ∈ [0,∞), r ∈ [2,∞), q > 0, k ∈ N. Taking

δn = sup

{((
k

nq

)2

+ x2

)
− 2x

k

nq
An

(
1

(nqx+ 1)r−1
, r, q, x

)}2

,

we get

||Anf − f || ≤ 2 · ω(f, δn).

Therefore, for every ε > 0, we get the relation

1

αn

∑
||Anf−f ||≥ε

anj ≤
1

αn

∑
2·ω(f,δn)≥ε

anj .

From conditions given in the theorem, we have

||Anf − f || = stA − 0(αn).

�

In what follows we give the rate of convergence for power summability method.

Theorem 3.2. Let f ∈ C[0,∞) and let φ be a positive real function defined on
(0, R). If ω(f, ψ) = 0(φ), as t→ R−, then we have

1

p(t)

∥∥∥∥∥
∞∑
n=0

(Anei − ei)pntn
∥∥∥∥∥ = 0(φ),

as t→ R−, where the function ψ : (0, R)→ R is defined by relation

ψ = sup

{
An

((
k

nq(nqx+ 1)r−1
− x
)2

, r, q, x

)}
.
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Proof. Let f ∈ C[0,∞). For any t ∈ (0, R), x ∈ (0,∞) and δ > 0, we have∣∣∣∣∣
∞∑
n=0

[An(f, r, q, x)− f(x)]pnt
n

∣∣∣∣∣ ≤
∞∑
n=0

An(|f(t)− f(x)|, r, q, x)pnt
n ≤

∞∑
n=0

An

ω
f,

∣∣∣ k
nq(nqx+1)r−1 − x

∣∣∣
δ

δ

 , r, q, x

 pnt
n ≤

∞∑
n=0

An

((
1 +

[∣∣∣∣∣
k

nq(nqx+1)r−1 − x
δ

∣∣∣∣∣
])

ω(f, δ), r, q, x

)
pnt

n

≤ ω(f, δ)
∞∑
n=0

An

1 +

(
k

nq(nqx+1)r−1 − x
)2

δ2
, r, q, x

 pnt
n ≤ ω(f, δ)

∞∑
n=0

An(e0(t), r, q, x)pnt
n+

ω(f, δ)

δ2

∞∑
n=0

An

((
k

nq(nqx+ 1)r−1
− x
)2

, r, q, x

)
pnt

n = p(t)ω(f, δ)+

ω(f, δ)

δ2
sup

{
An

((
k

nq(nqx+ 1)r−1
− x
)2

, r, q, x

)} ∞∑
n=0

pnt
n

= p(t)ω(f, δ) +
ω(f, δ)

δ2
sup

{
An

((
k

nq(nqx+ 1)r−1
− x
)2

, r, q, x

)}
p(t).

If we take δ = ψ, from last inequality we obtain:

0 ≤ 1

p(t)

∥∥∥∥∥
∞∑
n=0

(Anf − f)pnt
n

∥∥∥∥∥ ≤ 2ω(f, δ),

which proves the theorem. �

4. Voronovskaya theorem

In this section we will prove the Voronovskaya type theorem for new modified
Szász-Mirakyan operators via A− statistical convergence. First we give the follow-
ing, see [23],

Lemma 4.1. The first three central moments, for new Modified Szász-Mirakyan
operators are:

(1) An((t− x), r, q, x) = 1
nq ,

(2) An((t− x)2, r, q, x) = 1
n2q

[
1 + 1

(nqx+1)r−2

]
,

(3) An((t− x)3, r, q, x) = 1
n3q

[
1 + 3

(nqx+1)r−2 + 1
(nqx+1)2r−3

]
,

and we have to find

An((t− x)4, r, q, x).
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Proof. Proof of the central moments till third order are given in [23]. We calculate
the fourth order central moment, and after some calculation, we obtain

An((t− x)4, r, q, x) =

(
x+

1

nq

)4 [
1 +

3

(nqx+ 1)r
+

1

(nqx+ 1)2r

]
+

3

(
x+

1

nq

)3
1

nq(nqx+ 1)r−1

[
1 +

1

(nqx+ 1)r

]
+

3

(
x+

1

nq

)2
1

(nq(nqx+ 1)r−1)2

(
x+

1

nq

)
+

(
x+

1

nq

)
1

(nq(nqx+ 1)r−1)3
−

3x

(
x+

1

nq

)3 [
1 +

3

(nqx+ 1)r
+

1

(nqx+ 1)2r

]
+

3x2

(
x+

1

nq

)2 [
1 +

1

(nqx+ 1)r

]
− x3

(
x+

1

nq

)
−

x

n3q

[
1 +

3

(nqx+ 1)r−2
+

1

(nqx+ 1)2r−3

]
.

�

In [23] Walczak proved the Voronovskaya type theorem for the new modified
Szász-Mirakyan operators which is stated as:

Theorem 4.2. Let f ∈ Cp1 and let r ∈ [2,∞) be fixed number. Then

lim
n→∞

nq[An(f, r, q, x)− f(x)] = f
′
(x),

for every x > 0.

In what follows we will show that the Voronovskaya type theorem can be ex-
tended to A− statistical summability method for the new modified Szász-Mirakyan
operators. Let us consider operators Pn from Example 2.4. We first prove the
following.

Lemma 4.3. For every x ∈ [0, R], for any finite R, we have

n2qPn(Φ4) ∼ 8x4(stA) on [0,∞),

where Φx(y) = (y − x).

Proof. Proof of the Lemma follows directly from Lemma 4.1 and Example 2.4, for
this reason we omit it. �

Theorem 4.4. Let f ∈ C[0, R], for any finite R, such that f
′
, f
′′ ∈ C[0, R] and

x ∈ [0, R]. Then

nq[Pnf − f ] ∼ f
′
(x)(stA),

on [0, R].

Proof. Let us suppose that f
′
, f
′′ ∈ C[0, R] and x ∈ [0, R]. By Taylor’s expansion

we have:

f(y) = f(x) + (y − x)f
′
(x) +

1

2
(y − x)2f

′′
(x) + (y − x)2ψ(y − x), (4.1)

where ψ(y − x)→ 0, as y − x→ 0. From Lemma 4.1, we obtain

Pn(f, r, x) = (1+xn)f(x)+(1+xn)f
′
(x)An((y−x), r, q, x)+(1+xn)

f
′′
(x)

2
An((y−x)2, r, q, x)
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+(1 + xn)An((y − x)2ψ(y − x), r, q, x).

This yields

nqPn(f) = nq(1+xn)f(x)+nq(1+xn)f
′
(x)

(
1

nq

)
+nq(1+xn)

f
′′
(x)

2

1

n2q

[
1 +

1

(nqx+ 1)r−2

]
+nq(1 + xn)An((y − x)2ψ(y − x), r, q, x),

as well as

∣∣∣nq[Pn(f, r, q, x)− f(x)]− f
′
(x)
∣∣∣ ≤ nqxnM + xnM1 +

(1 + xn)

2nq
M2 ·

(
1 +

1

(nqx+ 1)r−2

)
+

nq(1 + xn)An((y − x)2ψ(y − x), r, q, x),

(4.2)

where M = ||f ||, M1 = ||f ′ || and M2 = ||f ′′ ||.
Now we have to prove that

lim
n→∞

nqAn(Φ2ψ(y − x), r, q, x) = 0.

Applying the Cauchy-Schwarz inequality to nqAn(Φ2ψ(y − x), r, q, x) yields

nqAn(Φ2ψ(y − x), r, q, x) ≤
[
n2qAn(Φ4, r, q, x)

] 1
2 · [An(ψ2, r, q, x)]

1
2 . (4.3)

Also, by putting ηx(y) = (ψ(y − x))2, we see that ηx(x) = 0 and ηx(·) ∈ C[0, R].
Clearly it follows that

An(ηx)→ 0(stA) on [0, R]. (4.4)

Now from relations (4.2), (4.3), (4.4) and Lemma 4.3 , we obtain

nqAn(Φ2ψ(y − x), r, q, x)→ 0(stA) on [0, R]. (4.5)

From the definition of the sequence (xn), it follows that

n2qxn → 0(stA) on [0, R].

For a given ε > 0, we define the following sets:

A =
∣∣∣{n :

∣∣∣nq[Pn(f, r, q, x)− f(x)]− f
′
(x)
∣∣∣ ≥ ε}∣∣∣ , (4.6)

A1 =
∣∣∣{n : |nqxn| ≥

ε

3M

}∣∣∣ , (4.7)

A2 =
∣∣∣{n : |nqxnAn((y − x)2ψ(y − x), r, q, x)| ≥ ε

3

}∣∣∣ , (4.8)

A2 =
∣∣∣{n : |nqAn((y − x)2ψ(y − x), r, q, x)| ≥ ε

3

}∣∣∣ . (4.9)

From these relations we obtain:

A ≤ A1 +A2 +A3. (4.10)

The desired result follows from relations (4.2), (4.6)-(4.9) and (4.10). �

Remark. Since the sequence x = (xn), given in Example 2.4, is not statistically
convergent we conclude that the operators (Pn), defined in Example 2.4, do not
satisfy Voronovskaya type theorem given in Theorem 4.2.
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5. Grüss-Voronovskaya theorems

In this section we will show some kind of Grüss-Voronovskaya type theorem for
the new modified Szász-Mirakyan operators. This kind of Theorem, was first seen
in [13]. In what follows we give the Theorem in the usual sense and then in A−
statistical sense.

Theorem 5.1. Let f
′
(x), g

′
(x), (fg)

′
(x) ∈ C[0,∞). Then

lim
n→∞

nq[An(fg, r, q, x)−An(f, r, q, x) ·An(g, r, q, x)] = f
′
g
′
.

Proof. By simple calculation we see that

nq{An(fg, r, q, x)−An(f, r, q, x)An(g, r, q, x)} = nq{An(fg, r, q, x)− fg − (fg)
′
−

g(x)[An(f, r, q, x)−f−f
′
]−An(f, r, q, x)[An(g, r, q, x)−g−g

′
]+g

′
[f(x)−An(f, r, q, x)]}.

The reminder of the Theorem follows from Theorem 4.2. �

Now we will prove this theorem in the sense of A− statistical convergence for
sequence Pn(f, r, q, x) defined in the Example 2.4

Theorem 5.2. Let f
′
(x), g

′
(x), (fg)

′
(x) ∈ C[0, R], for any finite R. Then

lim
n→∞

nq[Pn(fg, r, q, x)− Pn(f, r, q, x) · Pn(g, r, q, x)] ∼ f
′
g
′
(stA).

Proof. After some calculation we have:

nq[Pn(fg, r, q, x)−Pn(f, r, q, x)·Pn(g, r, q, x)] = nq
[
Pn(fg, r, q, x)− fg(x)− (fg)

′
(x)
]
−

nqg(x)
[
Pn(f, r, q, x)− f(x)− f

′
(x)
]
−nqPn(f, r, q, x)

[
Pn(g, r, q, x)− g(x)− g

′
(x)
]

+

g
′
(x) [f(x)− Pn(f, r, q, x)] .

From Theorem 4.4, we get

nq
[
Pn(fg, r, q, x)− fg(x)− (fg)

′
(x)
]
∼ 0(stA) (5.1)

nqg(x)
[
Pn(f, r, q, x)− f(x)− f

′
(x)
]
∼ 0(stA) (5.2)

nqPn(f, r, q, x)
[
Pn(g, r, q, x)− g(x)− g

′
(x)
]
∼ 0(stA) (5.3)

as n→∞, for x ∈ [0, R].
On the other hand,

nq[Pn(f, r, q, x)− f(x)] ∼ f
′
, as n→∞. (5.4)

The reminder of the poof of Theorem follows from relations (5.1)-(5.4). �
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